
© Peter R. Egli 2017
1/14

Rev. 2.00

Web Services peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF WEB SERVICE CONCEPTS
AND ARCHITECTURES

WEB
SERVICES



© Peter R. Egli 2017
2/14

Rev. 2.00

Web Services peteregli.net

Contents
1. What is a web service?

2. What is Service Oriented Architecture (SOA)?

3. What is a service?

4. Overview of web service technologies

5. Who makes web service standards?

6. Web service architectures

7. Web service versioning



© Peter R. Egli 2017
3/14

Rev. 2.00

Web Services peteregli.net

1. What is a web service?
Definition by W3C (see http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/):

A Web service is a software system designed to support interoperable machine-to-machine 

interaction over a network. It has an interface described in a machine-processable format 

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its 

description using SOAP-messages, typically conveyed using HTTP with an XML serialization in 

conjunction with other Web-related standards. 

Key elements:

• Machine-to-machine (M2M) interaction over a network

• Machine-processable interfaces

• APIs that can be accessed over a network

• Communication over HTTP (even though SOAP-WS make little use of the HTTP protocol)

Network

Web service client

Web services

Machine processable

interfaces

HTTP or

other

message based

transport

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/


© Peter R. Egli 2017
4/14

Rev. 2.00

Web Services peteregli.net

Network

2. What is Service Oriented Architecture (SOA)?
In contrast to „traditional“ enterprise IT architectures, SOA aims to consolidate common

functionality of different applications into services.

These services are exposed on a network so all consumers can use them when required.

 Services offer a defined interface to a component that implements the business functionality.

 Services should be designed such that they are as independent of each other as possible.

 Services (functionality) are no longer bound to a specific application. 

 In addition to the partitioning of an IT-landscape into applications, there is an additional 

dimension «service».

Infrastructure

Application

Infrastructure

Application

Infrastructure

Application

Traditional «stovepipe» or «silo» IT architecture

 Every application has its own infrastructure.

 Only the network is shared among the applications.

Network

Service oriented architecture

 Common functionality is consolidated into shared services.

 Applications run on a common service infrastructure.

Infrastructure

(services)

Application Application Application



© Peter R. Egli 2017
5/14

Rev. 2.00

Web Services peteregli.net

3. What is a service?
A service groups and encapsulates related functionality.

Example: Account service that allows tranferring / deducting money to / from a bank account.

How big should a service be?

Not too big, not too small...

Too big  Too many dependees, so overall coupling between clients and server is

high; it becomes difficult to make changes to the service without affecting

the clients.

Too small  Too many different services; service architecture may become brittle

(«spaghetti service architecture», «service fragmentation»).

Web

Service

Client

Web

Service

Web

Service

Web

Service

Web

Service

Tiny web services  service fragmentation

Web

Service

Service

Client

Big web service  tight coupling between

service and clients

Service

Client

Service

Client

Service

Client



© Peter R. Egli 2017
6/14

Rev. 2.00

Web Services peteregli.net

4. Overview of web service technologies (1/2)
Web service technologies can be classified according to the following 2 criteria:

1. Method information:

The method information expresses the action to be performed in the web service.

With regard to data, there are 3 possibilities:

a. Method = Action to be performed in web service, applied to data that is contained in 

request. Example: Store logging data on server.

b. Method = Action to be performed in web service, parametrized with data contained in 

request. Example: Get price quote for a specific product article.

c. Method = Action to be performed in web service, no data.

Example: Get current time and date.

2. Scope information:

The scope information defines the data context to which the request method is applied.



© Peter R. Egli 2017
7/14

Rev. 2.00

Web Services peteregli.net

4. Overview of web service technologies (2/2)
1. RPC-style web services („big web services“, „classic web services“):

• HTTP is only used as envelope. The method information is contained in a SOAP- / XML-body.

• The scope information is contained in the SOAP- / XML-body only.
<w:getWeatherUpdate xmlns:m=http://examples.indigoo.com/weatherService

env:encodingStyle=http://www.w3.org/2003/05/soap-encoding

xmlns:w="http://weatherService.indigoo.com/">

<w:location>

<w:latitude>47.359169</w:latitude>

<w:longitude>8.563843</w.longitude>

</w:location>

</s:getWeatherUpdate>

2. REST-style web services:

• Method information in HTTP method only.

• Scope information in URL only.
GET HTTP://www.indigoo.com/weatherInfo?location=Zurich

3. Hybrid RPC-style / REST-style combined:

• Method information mapped to URL.

• Scope information contained in URL.
GET HTTP://www.indigoo.com/weatherInfo?operation=get&location=Zurich



© Peter R. Egli 2017
8/14

Rev. 2.00

Web Services peteregli.net

5. Who makes web service standards?
1. W3C (www.w3.org)

W3C develops web technology standards for the Internet (like IETF for protocols).

List of W3C web service standards see http://www.w3.org/TR/. 

2. OASIS (www.oasis-open.org)

Besides W3C, OASIS is the main WS standards body. 

OASIS integrated the activities of WS-I (www.ws-i.org).

WS-I defines profiles for interoperability between web services (sets of OASIS standards to

be supported).

WS-I does not itself define standards but promotes interoperability between WS by defining

profiles (set of WS-* standards) to be supported by WS stacks / frameworks.

List of OASIS web service standards see https://www.oasis-open.org/standards. 

4. Companies

Companies like BEA, IBM and Microsoft develop standards that are sometimes later endorsed

by OASIS.

http://www.w3.org/
http://www.w3.org/TR/
http://www.oasis-open.org/
http://www.ws-i.org/
https://www.oasis-open.org/standards


© Peter R. Egli 2017
9/14

Rev. 2.00

Web Services peteregli.net

6. Web service architectures (1/4)
Web intermediaries:

Web intermediaries are placed between web service client and web service provider.

They intercept messages (requests and responses), perform some function and forward the

request to the destination.

Intermediaries perform typical functions that are shared in different web service architectures.

A. Authentication services:

The service client authenticates with the authentication service on an intermediary and

receives a security token for use in the subsequent secured session with the service provider.

Service

consumer

Service

provider
Intermediary Intermediary

Service

consumer

Service

provider
Intermediary

AA(A)
Security tokens 

(see WS-Security / WS-Trust)

Authentication

AAA Authentication, Authorization, Accounting

Authenticated communication



© Peter R. Egli 2017
10/14

Rev. 2.00

Web Services peteregli.net

6. Web service architectures (2/4)
B. Auditing services:

An auditing intermediary logs the entire activity between a service client and provider (e.g. for 

debugging purposes or to satisfy regulatory requirements).

C. Management services:

A management intermediary is used to collect statistical information about the service usage

and service health, maybe based on data from an auditing service. 

The management intermediary may be connected to and integrated into an IT management

network for service monitoring and management purposes (e.g. for guaranteeing the required

web service quality of service).

Service

consumer

Service

provider
Intermediary

Log

Service

consumer

Service

provider
Intermediary

Log IT management

system



© Peter R. Egli 2017
11/14

Rev. 2.00

Web Services peteregli.net

6. Web service architectures (3/4)
D. Performance improvement services (1/2):

Web intermediaries are placed between service client and provider to improve the overall

performance.

Caches: Resources are retrieved from a cache storage to offload the service provider.

Store-and-forward intermediaries: 

Message queueing service for offloading the service provider, i.e. to control the

load or also do load balancing. Such intermediaries may also be used to forward a 

request to a version-compatible service (see below, versioning of web services).

Service

consumer

Service

provider
Intermediary

Cache

Service

consumer

Service

provider

Intermediary

Service

provider



© Peter R. Egli 2017
12/14

Rev. 2.00

Web Services peteregli.net

6. Web service architectures (4/4)
D. Performance improvement services (2/2):

Aggregation intermediaries:

Aggregate several web services provided by different web service providers into a 

composite web service as a facade or interface towards the client.

Service

consumer

Service

provider

1

Intermediary

Service

provider

3

Aggregated

interface Service

provider

2



© Peter R. Egli 2017
13/14

Rev. 2.00

Web Services peteregli.net

7. Web service versioning (1/2)
Problem:

SOA is an open architecture (services exposed to the „outside“).

 Services cannot be easily modified or deleted because some other service or client depends

on it.

Solution 1: 

Update all clients and other web services each time the service changes («D-Day» approach).

 Will probably not work well because it does not scale (a small change required by 1 service

consumer leads to updates on all dependees).

Solution 2 (1/2):

Introduction of a versioning scheme with compatible and incompatible changes.

Version numbering scheme <major>.<minor>

Major (=incompatible) change  <major> is counted up.

Minor (=compatible) change  <minor> is counted up.
Compatible changes to a web service:

- Addition of an additional operation without changing the semantics of the existing operations

- Addition of an optional attribute to a data type

- Addition of new data type (probably along with a new operation)

Incompatible changes:

- Removal / renaming of a service, operation, data type or attribute

- Addition of a mandatory attribute

- Change of order of attributes (if ordering is applicable)



© Peter R. Egli 2017
14/14

Rev. 2.00

Web Services peteregli.net

7. Web service versioning (2/2)
Solution 2 (2/2):

The version must be present in the SOAP message, either as:

a. XML-namespace in the SOAP-envelope:
Example: <xsd:schema targetNamespace=„http://www.mycompany.com/MyService/2009-05-20>

b. Service name or data element extension in SOAP body:
Example: <xs:complexType name=„CustomerV1“>

c. HTTP-request parameter for version:
Example: 

HTTP GET HTTP/1.1

..

version: V1.2

In order to reduce or avoid any client changes when doing major changes to a web service, the following scheme may be

employed (the web intermediary serves as a service router based on the version):

Service

consumer

V1.1

Intermediary

Service

consumer

V2.0

Service

consumer

V1.0

Service

provider

V1.1

Service

provider

V2.0

Service

provider

V1.0


