
© Peter R. Egli 2017
1/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF REST, AN ARCHITECTURAL STYLE
FOR DISTRIBUTED WEB BASED APPLICATIONS

REST
REPRESENTATIONAL

STATE TRANSFER

© Peter R. Egli 2017
2/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

Contents
1. What is „Representational State Transfer“

2. Why REST?

3. Architectural constraints for REST

4. The REST ‘protocol’

5. REST versus SOAP

6. How to organize / manage the resources for REST web services

7. Additional functionality that may be used by REST-services

8. Formal description of REST services

9. ROA – Resource Oriented Architecture

10. Complex data queries with REST

11. Transactions with REST

12. Authentication with REST

13. Examples of REST services

© Peter R. Egli 2017
3/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

1. What is „Representational State Transfer“ ? (1/3)
REST, unlike SOAP, is not a WS (web service) standard but an architectural style for web

applications.

REST was devised by Roy Fielding in his doctoral dissertation:

"Representation State Transfer is intended to evoke an image of how a well-designed

Web application behaves: a network of web pages (a virtual state-machine), where

the user progresses through an application by selecting links (state transitions), resulting

in the next page (representing the next state of the application) being transferred to the

user and rendered for their use."

• REST is not a standard or protocol, REST is an architectural style.

• REST makes use of existing web standards (HTTP, URL, XML, JSON, MIME types).

• REST is resource oriented. Resources (pieces of information) are addressed by URIs and

passed from server to client (or the other way round).

N.B.: Roy Fielding is also author of a number of RFCs (e.g. RFC2616 HTTP 1.1, RFC3986 URI).

http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=2616&type=http&file_format=txt
http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=3986&type=http&file_format=txt

© Peter R. Egli 2017
4/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

1. What is „Representational State Transfer“ ? (2/3)
To understand the REST principle, look at what happens in a web access of a browser:

1. The client references a web resource using a URL.

2. The web server returns a representation of the resource in the form of an HTML document.

3. This resource places the client into a new state.

4. The user clicks on a link in the resource (e.g. Documents.html) which results in another

resource access.

5. The new resource places the client in a new state.

 The client application changes (=transfers) state with each resource representation.

Resource

Client

GET http://www.indigoo.com/documents

Slides

Tutorials

...

Whitepapers

...

Documents.html

S0

S1

S2

URL1

URL2

S3
URL3

URL0

The client changes state according

to the URLs it selects.

© Peter R. Egli 2017
5/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

1. What is „Representational State Transfer“ ? (3/3)
REST is based on existing web (WWW, HTTP) principles and protocols:

Resources:

Application state and functionality are abstracted into resources (everything is a resource).

Addressability of resources:

Every resource is uniquely addressable using hyperlinks.

Uniform interface for accessing resources:

All resources share a uniform interface for the transfer of state between client and resource,

consisting of

- a constrained (=limited) set of well-defined operations (GET, PUT, POST, DELETE).

- a constrained set of content types (text/html, text/xml etc.).

© Peter R. Egli 2017
6/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

2. Why REST?
Scalability of WWW:

The WWW has proven to be:

a. scalable (growth)

b. simple (easy to implement, easy to use)

REST rationale:

If the web is good enough for humans, it is good enough for machine-to-machine (M2M)

interaction.

The concepts behind RPC-WS (SOAP, XML-RPC) are different. RPC-WS make very little use of

WWW-concepts and technologies. Such WS define an XML-based interface consisting of

operations that run on top of HTTP or some other transport protocol. However, the features and

capabilities of HTTP are not exploited.

The motivation for REST was to create an architectural model for web services that uses the

same principles that made the WWW such a success.

The goal of REST is to achieve the same scalability and simplicity.

 REST uses proven concepts and technologies.

 REST keeps things as simple as possible.

© Peter R. Egli 2017
7/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

3. Architectural constraints for REST (1/2)
REST defines 6 architectural constraints that a system architecture should comply with to

obtain scalability.

1. Client-server paradigm:

A client retrieves resources from a server or updates resources on a server.

• Separation of concerns such as presentation (client) from data storage (server).

• Portability (UI may be ported to different platforms).

2. Stateless:

A client request contains all information necessary for the server to understand the request.

• No need for storing context (state) on the server.

• Better scalability.

3. Cacheable:

Data (resources) need to be labeled as cacheable or non-cacheable.

• Improve network performance.

© Peter R. Egli 2017
8/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

3. Architectural constraints for REST (2/2)
4. Uniform interface:

Uniformity of interfaces between components of a distributed application is a central feature of

REST.

Uniform interface means that resources are identified in a standard (uniform) way. Resources

are manipulated with standard methods.

• Simplified architecture.

• Decoupling of application (service) from interface.

• Also called HATEOAS – Hypermedia As The Engine Of Application State

5. Layered system:

Layers (or tiers) are aimed at the decomposition of the system functionality.

• Encapsulation of functionality in layers (e.g. encapsulation of legacy services behind a

standard interface).

• Decomposition of system functionality into client, server and intermediary.

6. Code on demand:

This constraint is optional for a REST-style system. Code on demand means the dynamic

download and execution of code on the client (Javascript etc.).

• Extensibility (e.g. extension of client with scripting code downloaded from the service).

© Peter R. Egli 2017
9/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

4. REST ‘protocol’ (1/5)
REST is not a protocol like SOAP.

But REST defines some core characteristics that make a system REST-ful.

N.B.: REST does not define something new, it simply makes use of existing protocols and

standards (HTTP, URI).

Addressing resources:

REST uses plain URIs (actually URLs) to address and name resources.

Access to resources:

Unlike RPC-WS where the access method (CRUD) is mapped to and smeared over SOAP

messages, REST uses the available HTTP methods as a resource interface:

Create (C)  HTTP POST

Read (R)  HTTP GET

Update (U)  HTTP PUT

Delete (D)  HTTP DELETE

REST assumes the methods GET, HEAD, PUT, DELETE to be idempotent (invoking the method

multiple times on a specific resource has the same effect as invoking it once) as defined in

RFC2616 (page 51).

REST assumes the methods GET and HEAD to be safe (do not change the resource’s state on

the server, i.e. resource will not be modified or deleted) as defined in RFC2616 (page 51).

http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=2616&type=http&file_format=txt
http://www.rfc-editor.org/cgi-bin/rfcdoctype.pl?loc=RFC&letsgo=2616&type=http&file_format=txt

© Peter R. Egli 2017
10/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

4. REST ‘protocol’ (2/5)
Resource representations:

REST uses standard resource representations like HTML, XML, JSON, GIF, JPEG. Commonly

used representations are XML and JSON (preferable to XML if the data needs to be transferred

in a more compact and readable form).

Media types:

REST uses the HTTP header Content-type (MIME types like text/html, text/plain, text/xml,

text/javascript for JSON etc.) to indicate the encoding of the resource.

State:

Application state is to be maintained on the client. The server does not have to maintain a state

variable for each client (this improves scalability).

Resource state (resource creation, update, deletion), however, is maintained on the server.

© Peter R. Egli 2017
11/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

Product

List

Product

Purchase

order

4. REST ‘protocol’ (3/5)
Example of a REST-ful access (1/3):

HTTP Response:

XML doc

HTTP GET request

Web client Web server

HTTP Response:

XML doc

HTTP GET request

HTTP POST PO:

XML doc

URL2

URL1

URL3

HTTP response

1

2

3

4

5

6

© Peter R. Egli 2017
12/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

4. REST ‘protocol’ (4/5)
Example of a REST-ful access (2/3):

1. & 2. product list request:

The client requests a product list that is available under the URL

http://www.cool-products.com/products&flavor=xml (URL1).

The response contains the resource encoded in XML.

3. & 4. product selection:

The client application (or the user in front of the browser) selects product 00345 by placing a

request for the URL http://www.cool-products.com/products/00345&flavor=xml (URL2).

The response contains an XML representation of the product info for product 00345.

5. & 6. placing a purchase order:

The client application places a purchase order (PO) for product 00345 by requesting the

resource under the URL http://www.cool-products.com/products/00345/PO?quantity=7 (URL3).

The purchase order contains additional information entered on the client (customer name etc.).

Therefore the request is a POST accompanied by the XML representation of the purchase order.

© Peter R. Egli 2017
13/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

<?xml version="1.0"?>

<p:Products xmlns:p="http://www.cool-products.com"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.cool-products.com

http://www.cool-products.com/products.xsd">

<Product id="00345" xlink:href="http://www.cool-products.com/products/00345"/>

<Product id="00346" xlink:href="http://www.cool-products.com/products/00346"/>

<Product id="00347" xlink:href="http://www.cool-products.com/products/00347"/>

<Product id="00348" xlink:href="http://www.cool-products.com/products/00348"/>

</p:Products>

<?xml version="1.0"?>

<p:Product xmlns:p="http://www.cool-products.com"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.cool-products.com

http://www.cool-products.com/product.xsd">

<Product-ID>00345</Product-ID>

<Name>Widget-A</Name>

<Description>This product is made of disposable materials</Description>

<Specification xlink:href="http://www.cool-products.com/products/00345/specification"/>

<PurchaseOrder xlink:href=http://www.cool-products.com/products/00345/po/>

<UnitCost currency=“CHF">1.40</UnitCost>

<Quantity>10</Quantity>

</p:Product>

4. REST ‘protocol’ (5/5)
Example of a REST-ful access (3/3):

Products list:

Product 00345 info:

Product list contains links to

get detailed information about

each product (e.g. using XLink).

This is a core feature of REST.

Another URL is

provided in the product

XML response for

placing purchase orders.

© Peter R. Egli 2017
14/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

5. REST versus SOAP (1/5)
Comparison table:

Aspect SOAP / WSDL (RPC-WS) REST

Standard
SOAP: W3C SOAP 1.2

WSDL: W3C WSDL 2.0

No standard, makes use of existing standards like RFC2616

HTTP 1.1

Resource addressing Indirect via SOAP operations Every resource has its own URL

URL Only used to address the SOAP processor Used to address individual resources (data sets)

Error handling SOAP fault messages
E.g. <Error> element in response, similar to SOAP <fault>

element

Data presentation XML All encodings defined by HTTP (XML, text, JSON, JPG etc.).

Use of HTTP Only as transport protocol (envelope)
Actions on resources (CRUD) mapped to HTTP methods

(PUT, GET, POST, DELETE)

Compliance with web

axioms (1)
Low (does not make much use of web features) High (see axiom 0 and 1)

State
Stateful (every SOAP action is part of an

application defined interaction)

Stateless (requests are “self-contained”, no context saved

on server)

Transactions
Supported by SOAP (SOAP header transaction

element)

More difficult, but possible e.g. by modelling a transaction

as a resource

Registry / service

discovery
UDDI / WSDL

None (maybe search engines like Google can be seen as

registries of REST web services)

Method Inside SOAP body HTTP method

Scoping (which data?) Inside SOAP body Part of URL

State transitions of client

application

More difficult to determine the next state (SOAP

message does not contain data to do this)
Simpler, based on URL (URL ‚points‘to the next state)

Web intermediaries

(proxies, caches,

gateways etc.)

More difficult since proxies need to peek into

SOAP messages to determine the receiver

Simpler since the receiver can be identified by the URL

(simple mapping of resource with URL to a receive handler)

(1) See http://www.w3.org/DesignIssues/Axioms.html

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.w3.org/DesignIssues/Axioms.html

© Peter R. Egli 2017
15/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

5. REST versus SOAP (2/5)
Comparison of architectures:

Products

List

Product

PO

HTTP Response:

HTML / XML doc

HTTP GET request

Web

client
Web

server

HTTP Response:

HTML / XML doc

HTTP GET request

HTTP POST PO:

HTML / XML doc

URL2

URL1

URL3

HTTP response

Request

(XML)

HTTP

POST
URL1 getProductsList()

Response

(XML)

HTTP response

SOAP

envelope

SOAP

envelope
Web

server

SOAP

server

Web

client

Request

(XML)

HTTP

POST
URL1

Response

(XML)

HTTP response

PO

(XML)

HTTP

POST
URL1

Response

(XML)

HTTP response

getProducts(ID)

submit(PO)

• RPC-WS (SOAP) use the same URL (URL1 in the example)

for all interactions.

• The SOAP server parses the SOAP message to determine

which method to invoke.

• All SOAP messages are sent with HTTP POST requests.

• REST uses different URLs to

address resources.

• The web server directly dispatches a request

to a handler (URL addresses a handler).

• REST maps the type of access

to HTTP methods.

REST SOAP

© Peter R. Egli 2017
16/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

5. REST versus SOAP (3/5)
Use of proxy servers:

• The URL identifies the desired resource.

• The HTTP method identifies the desired

operation (GET, PUT, POST, DELETE).

• A proxy can accept / reject access based on

the resource identified by a URL and the

HTTP method.

• The proxy server cannot determine the target resource from

the URL. The URL only addresses the SOAP server.

• A proxy server with filtering / access control needs to look

into and understand the SOAP message (semantics)

to find out the target resource:
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DEF</symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Request with URL

pointing to

SOAP server:

http://www.anywhere.org/soapServer

Filter

Accept

or

Reject

Desired resouce (=URL)

Access method (HTTP method)

What is the resource?

The proxy server must

understand the semantics

of the SOAP message to

know which resource is

being accessed.

Resource 1

Resource 2

Resource 3

Web

Client

Web

server

Proxy

server

http://www.anywhere.org.resource2

AAA

401 Unauthorized

http://www.anywhere.org/resource1

HTTP Response:

HTML / XML doc

Web

server

SOAP

server

Web

client

Proxy

serverSOAP

envelope

SOAP

envelope

SOAP

envelope

Resource 1

Resource 2

Resource 3

Authorization /

admission control
AAA

Authorization /

admission control

© Peter R. Egli 2017
17/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

5. REST versus SOAP (4/5)
State transfer:

REST is modelled after the well-known interaction model of humans with the web (browsing).

The user loads a page, reads it, follows a link to get another page. Each page puts him into

another state.

REST applies this simple model and puts much control of the application into the server (links

in XML responses guide through the application).

S1

S2a

S2b

S2c

S3a

The links in the response XML document ‚points‘

to the next state.

Using XLink technology (hyperlink markup, see

http://www.w3.org/TR/xlink/) allows adding more

information about the resource linked to (XLink:role).

S0

URL2a  R2a

URL2b  R2b

URL2c  R2c

Resource 1 (R1)

representation;

Links to next

resources

Resource 2a (R2a)

representation;

Links to next

resources

URL3a  R3a

URL3b  R3b

Resource 3b (R3b)

representation;

Links to next

resources

S1

S2a

S2b
S3b

S2c

S3a

S0

SOAP

The SOAP messages contain no hyperlinks, only data.

The client cannot obtain information on what

to do next from the SOAP message but must

get this information somewhere else

(must be built in into the client application).

SOAP

SOAP
S3b

URL1a  R1a

http://www.w3.org/TR/xlink/

© Peter R. Egli 2017
18/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

5. REST versus SOAP (5/5)
Use of caching (proxy) servers:

• Caching in HTTP is a proven technology

to speed up accesses and reduce network load.

• REST may (re)-use the very same cache logic

(server must place cacheability information into

the HTTP header).

• The cache cannot directly determine if the resource is

cacheable or can be retrieved from the cache.

• It is even worse: The cache cannot even know if the

client accesses a resource.

 Simple caching proxies can not be used with SOAP.

 Only the SOAP server itself can do caching; but this means

that the request already consumed network bandwidth, opened

an additional connection to the web server and started a new

request on the SOAP server.

Request with URL

pointing to

SOAP server:

http://www.anywhere.org/soapServer

Cache
Forward

request

Desired resouce (=URL)

Access method (HTTP method)

Return

cached

copy

Resource 1

Resource 2

Resource 3

Web

Client

Web

server

Web

cache

Cache

http://www.anywhere.org/resource1

HTTP Response:

Cached response

Web

server
SOAP

server

Web

client

Web

cacheSOAP

envelope

SOAP

envelope

SOAP

envelope

Resource 1

Resource 2

Resource 3

Cache

© Peter R. Egli 2017
19/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

6. How to organize / manage the resources for REST web services
Does REST require that all resources need to be stored as individual XML files?

http://www.cool-products/products/000000

http://www.cool-products/products/000001

...

http://www.cool-products/products/999999

 No!

REST uses „logical“ URLs, i.e. addresses that identify a resource. A resource is physically

stored somehow in memory (DB, file, directory service etc.).

 The underlying implementation of a resource and its storage is transparent to the REST-

client.

Resources are converted to XML fragments „on-the-fly“, i.e. the REST-server retrieves the data

e.g. from a DB and converts them to XML fragments.

Web

client
Web

server

Web

cache DBLogical URL = REST resource address:

http://www.anywhere.org/resource1

HTTP Response:

XML document

REST

server

LDAP

FS

REST server

determines a physical

address of the resource in

the storage

DB Data Base

FS File System

LDAP Lightweight Directory

Access Protocol

© Peter R. Egli 2017
20/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

7. Additional functionality for REST-services
„Basic REST“ puts the scoping information (which data) into the HTTP URL and the method

information (what to do with the data) into the HTTP method (GET, PUT, POST, DELETE).

REST may use additional features and signal these with additional fields of the HTTP header.

Function Used HTTP functionality

Compression of transferred HTTP-

body data

HTTP encoding headers:
Request header: Accept-Encoding

Response header: Encoding

Cache the responses (have faster

access)

HTTP caching headers:
Request header: Etag, If-Modified-Since

Response header: Etag, Last-Modified

Authentication (basic, digest etc.)

HTTP authentication headers:
Request header: Authorization

Response header: WWW-Authenticate

Redirect a request to another

server (e.g. service has moved)

HTTP redirect:

HTTP return code 301 ‚Moved Permanently‘ with new URL

REST-WS client has to avoid redirect loops (e.g. give up after 10

redirects).

© Peter R. Egli 2017
21/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

8. Formal description of REST services (1/4)
Web services may use description files that formally define / describe the service they offer.

RPC-WS (SOAP): WSDL (Web Service Description Language)

REST-WS: a. „Human-readable “ description (e.g.

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html) or

b. WADL (Web Application Description Language) or

c. WSDL (WSDL 2.0 allows to describe REST-WS)

WADL (1/2):

WADL is not an official (W3C, OASIS) standard.

WADL was invented by Sun Microsystems for the Java ecosystem.

There is a WADL specification under https://wadl.java.net/.

Critique of WADL and WSDL 2.0 for REST:

Formal description of service allows better machine processing (e.g. code generation of

stubs).

Additional layer of complexity (REST services becomes more complex).

https://wadl.java.net/

© Peter R. Egli 2017
22/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

8. Formal description of REST services (2/4)
b. WADL (2/2):

WADL example 1 for a REST-WS: The ever-popular stock service

<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://research.sun.com/wadl/2006/10 wadl.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ex="http://www.example.org/types"

xmlns="http://research.sun.com/wadl/2006/10">

<grammars>

<include href="ticker.xsd"/>

</grammars>

<resources base="http://www.example.org/services/">

<resource path="getStockQuote">

<method name="GET">

<request>

<param name="symbol" style="query" type="xsd:string"/>

</request>

<response>

<representation mediaType="application/xml"

element="ex:quoteResponse"/>

<fault status="400" mediaType="application/xml"

element="ex:error"/>

</response>

</method>

</resource>

</resources>

</application>

Source: http://www.ajaxonomy.com/2008/xml/web-services-part-2-wsdl-and-wadl

WADL Example 2: Yahoo news search service (see

http://weblogs.java.net/blog/mhadley/archive/2005/05/introducing_wad.html)

http://www.ajaxonomy.com/2008/xml/web-services-part-2-wsdl-and-wadl
http://weblogs.java.net/blog/mhadley/archive/2005/05/introducing_wad.html

© Peter R. Egli 2017
23/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

8. Formal description of REST services (3/4)
c. WSDL example for REST-WS (1/2):

<wsdl:description xmlns:wsdl="http://www.w3.org/ns/wsdl"

targetNamespace="http://www.bookstore.org/booklist/wsdl"

xmlns:tns="http://www.bookstore.org/booklist/wsdl"

xmlns:whttp="http://www.w3.org/ns/wsdl/http"

xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:msg="http://www.bookstore.org/booklist/xsd">

<wsdl:documentation>

This is a WSDL 2.0 description of a sample bookstore service

listing for obtaining book information.

</wsdl:documentation>

<wsdl:types>

<xs:import namespace="http://www.bookstore.org/booklist/xsd"

schemaLocation="booklist.xsd"/>

</wsdl:types>

<wsdl:interface name="BookListInterface">

<wsdl:operation name="getBookList"

pattern="http://www.w3.org/ns/wsdl/in-out"

style="http://www.w3.org/ns/wsdl/style/iri"

wsdlx:safe="true">

<wsdl:documentation>

This operation returns a list of books.

</wsdl:documentation>

<wsdl:input element="msg:getBookList"/>

<wsdl:output element="msg:bookList"/>

</wsdl:operation>

</wsdl:interface>

Request-response messaging pattern

Definition of book-list XML response format

© Peter R. Egli 2017
24/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

8. Formal description of REST services (4/4)
c. WSDL example for REST-WS (2/2):

<wsdl:binding name="BookListHTTPBinding"

type="http://www.w3.org/ns/wsdl/http"

interface="tns:BookListInterface">

<wsdl:documentation>

The RESTful HTTP binding for the book list service.

</wsdl:documentation>

<wsdl:operation ref="tns:getBookList" whttp:method="GET"/>

</wsdl:binding>

<wsdl:service name="BookList" interface="tns:BookListInterface">

<wsdl:documentation>

The bookstore's book list service.

</wsdl:documentation>

<wsdl:endpoint name="BookListHTTPEndpoint"

binding="tns:BookListHTTPBinding"

address="http://www.bookstore.com/books/">

</wsdl:endpoint>

</wsdl:service>

</wsdl:description>

Source: https://www.ibm.com/developerworks/webservices/library/ws-restwsdl/

REST-WS is bound to the HTTP-protocol

The operation getBookList is bound to the HTTP

GET method

Address of booklist

https://www.ibm.com/developerworks/webservices/library/ws-restwsdl/

© Peter R. Egli 2017
25/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

9. ROA – Resource Oriented Architecture (1/3)
ROA is similar to SOA, but uses REST-style web services instead of SOAP.

SOA  SOAP WS:

The service as a collection of operations and message types is central to SOA.

The data (resources) are accessible indirectly via SOAP operations.

ROA  REST WS:

REST defines a set of design criteria while ROA is a set of architectural principles.

A resource is a unit of data that is worth to be addressed, accessed and processed individually

(e.g. a document, a row in a DB, the result of a calculation etc.).

A resource is identified and addressed by one or multiple URIs.

URI 1

Resource

«addresses»

URI 2

http://www.sw.com/sw/releases/1.0.3.tar.gz

http://www.sw.com/sw/releases/latest.tar.gz

2 URIs may 'point' to the

same resource.

«addresses»

© Peter R. Egli 2017
26/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

9. ROA – Resource Oriented Architecture (2/3)
ROA principles (1/2):

1. Addressability:

All data is exposed as a resource with an URI.

2. Statelessness:

The context of access (e.g. result page of search) should not be stored as a cookie (cookies are

unRESTful). Instead, the context / state should be modelled as an URI as well.

Example:
/search?q=resource+oriented+architecture&start=50 (page is part of URI).

N.B.: HTTP is stateless (unlike e.g. FTP).

3. Uniform interface:

Map request methods uniformly to HTTP methods (GET, PUT, DELETE, POST).

A uniform interface should be safe and idempotent:

GET, HEAD  Safe (resources and server state are not changed).

GET, HEAD, PUT, DELETE  Idempotent (method can be called multiple times).

© Peter R. Egli 2017
27/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

9. ROA – Resource Oriented Architecture (3/3)
ROA principles (2/2):

4. Connectedness:

In ROA, resources should link to each other in their representations (resources are 'connected'

to each other).

RPC-style WS:

Everything is addressed

through a single URI.

REST-hybrid WS:

WS with addressable but not

connected resources (no links

between resources).

Example: Amazon S3 WS.

Fully RESTful:

WS with addressable and connected

resources.

Resource

Resource

Resource
Resource

Resource

Resource

Resource

Resource

Resource

© Peter R. Egli 2017
28/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

10. Complex data queries with REST
REST allows doing more complex data (resource) queries by mapping the HTTP methods to

SQL commands.

Mapping REST to SQL like queries:

HTTP GET  SQL SELECT (retrieve data)

HTTP PUT  SQL UPDATE (store data)

HTTP DELETE  SQL DELETE (delete data)

HTTP POST  SQL INSERT (create data)

N.B.: The mapping is of course not 1:1 because SQL offers many more possibilities regarding

data manipulation (select from multiple tables, join records from multiples tables etc.).

The REST interface has to be clearly defined, but must not get too complicated (otherwise it

would not be RESTful anymore!).

Example library for a RESTful SQL interface see http://phprestsql.sourceforge.net/.

http://phprestsql.sourceforge.net/

© Peter R. Egli 2017
29/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

11. Transactions with REST
Typical example that requires a transaction:

Solution with REST: Model transaction as a resource.

Resource
Bank account 1

(checking account)
Resource

Bank account 2

(saving account)
Money transfer

Web client Web server
POST /transactions/account-transfer HTTP/1.1

201 Created

Location: /transactions/account-transfer/11a5

PUT /transactions/account-transfer/11a5/accounts/checking/11 HTTP/1.1

balance=150

PUT /transactions/account-transfer/11a5/accounts/savings/55 HTTP/1.1

balance=250

PUT /transactions/account-transfer/11a5 HTTP/1.1

committed=true

200 OK

Content-Type: application/xhtml+xml

...

Checking #11: New balance $150

Savings #55: New balance $250

DELETE /transactions/account-transfer/11a5 HTTP/1.1 Client could rollback

the transaction with

a DELETE

Transaction = resource,

11a5 = transaction ID

11 = checking account

number

55 = saving account

number

Commit transaction

Server reports a

successful transaction

back to the client

© Peter R. Egli 2017
30/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

12. Authentication with REST (1/3)
REST web services typically make use of the defined HTTP (RFC2616) authentication

mechanisms.

The HTTP Authorization header is extensible so any authentication mechanism is possible,

even proprietary schemes as exemplified by Amazon's AWS signature (see below).

HTTP client authentication mechanisms (non-exhaustive list):

a. Basic authentication (RFC2617)

b. Digest access authentication (RFC2617)

c. Proprietary (e.g. Amazon AWS signature)

HTTP server and mutual authentication:

Digest access authentication (RFC2617) provides some degree of server authentication (server

authenticates itself to the client).

However, for true mutual authentication and security, HTTPs (TLS) is a better choice.

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt

© Peter R. Egli 2017
31/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

12. Authentication with REST (2/3)
Amazon AWS authentication / digital signature creation (AWS signature version 4):

Step 1:

Normalize request (canonical request) so that AWS "sees" the same request and calculates the

same signature.

Step 2:

Create string to sign.

Original

request
RequestPayload

Hash

(SHA-256)
Digest

Base-16

Encoding

HTTP method + '\n'

CanonicalURI + '\n'

CanonicalQueryString + '\n'

CanonicalHeaders + '\n'

SignedHeaders + '\n'

Payload

Canonical request

Canonical

request
Hash

(SHA-256)

AWS4-HMAC-SHA256 + '\n'

20131114T211624Z + '\n'

20131114/us-west-1/iam/aws4_request + '\n'

Hashed canonical request

Credential scope

Request date

Hash algorithm

String to sign

© Peter R. Egli 2017
32/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

12. Authentication with REST (3/3)
Amazon AWS authentication / digital signature creation (AWS signature version 4):

Step 3:

Calculate signature.

Sample AWS request:
POST http://s3.amazonaws.com/ HTTP/1.1

Authorization: AWS4-HMAC-SHA256 Credential=AKIDEXAMPLE/20110909/us-east-1/s3/aws4_request,

SignedHeaders=content-type;host;x-amz-date,

Signature=ced6826de92d2bdeed8f846f0bf508e8559e98e4b0199114b84c54174deb456c

host: s3.amazonaws.com

Content-type: application/x-www-form-urlencoded; charset=utf-8

x-amz-date: 20110909T233600Z

String to

sign

Secret access key

"AWS4"

HMAC-

SHA256

"20131114"

Request date

HMAC-

SHA256

"us-west-1"

AWS Region

HMAC-

SHA256

"s3"

AWS service

HMAC-

SHA256

"aws4-request"

Fixed string

Derived

signing key

HMAC-

SHA256

Base-16

encoding
Digital signature

© Peter R. Egli 2017
33/33

Rev. 2.50

REST – Representational State Transfer peteregli.net

13. Examples of REST services
1. Amazon S3 service (http://aws.amazon.com/s3/)

2. Atom publishing protocol (news feeds, see RFC5023)

3. Flickr API (see https://www.flickr.com/services/api/)

4. Yahoo web search (https://developer.yahoo.com/)

5. DynDNS IP address updates (http://dyn.com)

6. Google search API (see http://googlesystem.blogspot.ch/2008/04/google-search-rest-

api.html).

N.B.: Google deprecated the SOAP API, see also groups.google.com.

http://aws.amazon.com/s3/
http://www.rfc-editor.org/rfc/rfc5023.txt
https://www.flickr.com/services/api/
https://developer.yahoo.com/
http://dyn.com/
http://googlesystem.blogspot.ch/2008/04/google-search-rest-api.html
http://groups.google.com/group/google.public.web-apis/browse_frm/thread/60e1cf592a9c1410/a5c69859ccadff4d?lnk=raot

