TRANSPORT
PROTOCOLS

INTRODUCTION TO PRINCIPLES OF
TRANSPORT PROTOCOLS FOR TCP/IP NETWORKS

Peter R. Egli
peteregli.net

Transport Protocols peteregli.net

Contents

Transport layer functions

Elements of transport protocols (addressing)

Elements of transport protocols (connection establishment)
Elements of transport protocols (connection release)
Elements of transport protocols (flow control and buffering)
Elements of transport protocols (multiplexing)

Elements of transport protocols (crash recovery)

Elements of transport protocols (programming API)
Transport layer characteristics

O©CXNoOOGORkWNE

_ 2121
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

1. Transport layer functions (1/3)
The transport layer is the interface between the network and application (,,network API*).
The transport layer provides 2 main functions to the application:

1. Data transport service (transport data to another remote or local application)

2. Some level of QoS (Quality of Service)

‘ Transport Layer provides some

OSl Layer > 4 kind of QoS to upper layers.

OSl Layer 4 Data transport
service
OSl Layer 3
OSlI Layer 2 Data link layer > No QoS (=best-effort service)
OSI Layer 1 Physical layer
S

QoS: Quality of Service
OSI: Open SystemS Interconnection

© Peter R. Egli 2017

3/21
Rev. 3.50

Transport Protocols peteregli.net

1. Transport layer functions (2/3)

QoS:

IP and lower layers do not provide any QoS. The service is best-effort (send packets, but do
not provide any delivery guarantee). It is up to the upper layers to deal with network problems.

The transport layer may hide network imperfections (problems on the network) from
the application.

Possible problems on the network are (incomplete list):

Packet loss:

Packet loss typically occurs in congested IP routers (too many packets have to be forwarded
to the same outbound interface at the same time).

Packet duplicates:

Packet duplicates may occur due to routing loops or retransmissions due to a slow network.
Out of order packets:

Due to different transmission paths one IP packet may get ahead of another IP packet.

Bit errors:

Bit errors may occur due to various electromagnetic interferences. Bit errors are typically
relatively high on wireless links.

Delay of packets:

Packets get delayed in the network due to buffering, transmission delay etc.

Different transport protocols provide different levels of QoS (from none to full QoS).

: 4/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

1. Transport layer functions (3/3)
Possible QoS (Quality of Service) characteristics or functions of the transport protocol:

Connection establishment delay:

How long does it take to establish a transport connection?

Connection establishment failure probability:

How often does a connection establishment fail?

In-order delivery:

Does the transport protocol take care of packet ordering?

Throughput:

Does the transport protocol optimize throughput?

Transit delay:

Does the transport protocol minimize delay, i.e. send packets as quickly as possible?
Error ratio:

Does the transport protocol detect errors or even correct errors?

Priority:

Does the transport layer provide a priority mechanism (send high priority packets first)?
Resilience:

Do transport connections survive a system crash (persistence of connection)?
Protection:

Does the transport protocol provide protection against eavesdropping, wiretapping etc.?

_ 5/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

2. Elements of transport protocols (1/14)

Addressing:

A TSAP (Transport Service Access Point) is the access point to the transport service for an
application. A TSAP contains a port number as transport address.

TSAPs provide multiplexing / demultiplexing between different applications.

Likewise the NSAP (Network Service Access Point) is the access point to the network service
for the transport layer. An NSAP contains an IP address, i.e. the address of a hop / node in
the network.

TSAP with TSAP with Server
port=1208 port=1522 processes
Application
process
Application layer
Transport
connection TSAP with
Transport layer port=1836
NSAP Network layer NSAP

Data link layer

Physical layer

’’’’’

) 6/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

3. Elements of transport protocols (2/14)

Connection establishment (1/5):

Prior to exchanging data a client and server must establish a connection

(like a telephone connection).

On some architectures (Unix) a single server acts as a proxy and spawns the actual
server process that provides the service (“xinetd” daemon).

1. The application connects to the 2. The process server launches the
process server’s (PS) TSAP. respective application service (Srv)
and passes it the connection (TSAP).
Host 1 Host 2 Host 1 Host 2

00000
..

. 7121
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

3. Elements of transport protocols (3/14)
Connection establishment (2/5):

Duplicate packet problem:

A network can duplicate packets. E.g. on a very slow network
this happens when every packet is retransmitted once.

Host 1 Host 2

Proposed Solution 1:
The transport layers use a session / connection identifier.
Each host maintains a table with used session identifiers.

© Duplicate packets can be detected and discarded.

0
o [3 o 3
v () o~ o)
P~} N > o
D o® ~
Q 2 Q)
g D -~ Q
ﬁ
® a » <
Q [3) o
[~ = ~
®
n
~

@ Possibly large tables.
@ Difficult and slow to manage.
@ Tables will not survive a host crash / reboot.

_ 8/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

3. Elements of transport protocols (4/14)
Connection establishment (3/5):
Proposed Solution 2 (duplicate packet problem):
A. Limit the lifetime (T) of packets in network through:

* Hop counter (TTL)

* Restricted subnet design

* Timestamp each packet (each host is required to have a clock that survives a crash).
B. Make sure that time T passes after a packet with sequence number x is sent (forbidden
regions).

© Duplicate packets can be detected and discarded.
But:
@ Areal time clock (RTC) is required

that survives system reboots

(needs special hardware). Forbidden o1 |
. . . . 2 message

@ Forbidden regions are difficult g0l & o
to avoid. 2 Lo £
2 80 <SS 2
§ 70 - Restart after §
§ @ \crash with 70 ;%-
wn

Actual sequence
| | | | | numbers used

0O 30 60 90 120 150 180
Time Time
(a) (b)

Source: http://authors.phptr.com/tanenbaumcn4/

_ 9/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net
3. Elements of_transport protocols (5/14) Host 1 Host 2
Connection establishment (4/5): CR
Proposed Solution 3 (duplicate packet problem): W
A. Put a sequence number (~timestamp) into each packet.
B. Client and server acknowledge each others 4-way ACK
sequence numbers (synchronize each others handshake Ack#=2
sequence numbers). CR SN2
®© Fool-proof. >
Simple. ACk
No special requirements for sequence number Ack-#:,sNz
(may be derived from system tick).
The 4-way handshake may be collapsed into a 3-way
handshake. CR
Seq'#=[SN1
ACK =\sN1
o

Seq-#:
Ack-#:
ISN:
CR:
ACK:

Sequence number

Acknowledge number

Initial Sequence Number
Connect Request

Acknowledge (packet with Ack-#)

© Peter R. Egli 2017

10/21
Rev. 3.50

Transport Protocols peteregli.net

3. Elements of transport protocols (6/14)

Connection establishment (5/5):

Proposed Solution 3 (duplicate packet problem):

The solution is foolproof. Duplicate packets can always be detected.

Normal operation: Old connection request Duplicate connection request
appearing out of the blue: and duplicate Ack:
Host 1 Host 2 Host 1 Host 2 Host 1 Host 2
CR CR CR

LEIsn Se Se‘7"“‘=ISIV1

<Q
a#
<
N

pot A\ pc¥ st
Pdkérﬁ“n'
se

P\C’K ‘\S\s\‘\
P‘C’\Q‘“‘ ;\3“2

&
S
\
-~
»
PGS
* 5
-
[{})
Zz
<
o
o
PN
PN

Ack S

A ‘{ ACek
REJ
Ack.oCT

-~

%
J
(72)
<
o

)
2]
/

2]
X~
by
(7))
<

REJECT: Connection reject _
DATA: Packet with user data Old duplicate packets

_ 11/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols

peteregli

.het

4. Elements of transport protocols (7/14)
Connection release (1/3):

Problem:

Asymmetric release (only 1 peer closes the connection)
is abrupt and may cause data loss.

Proposed solution:
Either side will disconnect its (outgoing) direction of the
duplex connection (possibly collapsed into 3-way handshake).
® No dataloss.
But:
@ Not fool-proof (DR packet may get lost

and thus connection not closed, see next slide).

DR: Disconnect Request

Host 1

Host 2

—

ACK
DATA
%
DR T

No data delivered after

a disconnect request

Host 1

Host 2

—

ACK
DATA
K
ACK
DR
ACK

© Peter R. Egli 2017

12/21
Rev. 3.50

Transport Protocols peteregli.net

4. Elements of transport protocols (8/14)
Connection release (2/2):

Problem:

No protocol/procedure exists that can
guarantee the proper connection
termination in case of packet loss
(“Two-army problem”,
“Army-in-the-middle-problem”).

White army

Source: http://authors.phptr.com/tanenbaumcn4/
Army-in-the-middle situation:
The blue army has 4 troops (2 on either side of valley) while the white army has 3 troops. If both blue armies charge at the
same time they can vanquish the white army. If only one of the blue armies charges it will succumb (3 white troops
against 2 blue troops). This means: the blue armies have to synchronize their attack.
But in order to synchronize they need to send a messenger through the valley; of course the messenger can get
caught by the white army (‘lost packet’).
Approach #1:
The blue army #1 sends a messenger to tell blue army #2 to attack @ 1400.
Problem:
The blue army #1 does not know if the messenger managed to convey message or if he was caught.
Thus blue army #1 will not attack.
Approach #2:
The blue army #2 sends back a messenger to acknowledge to blue army #1 that it got the message.
Problem:
The blue army #2 does not know if acknowledge-messenger reached blue army #1. Thus blue army #2 will not attack.
=» This play can be continued ad infinitum. No algorithm exists to make the acknowledgment procedure fool-proof.

_ 13/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

4. Elements of transport protocols (9/14)
Connection release (3/3):
Proposed solution:

Start a timer when sending the DR. When it times out release the connection anyway.
Normal case of 3-way handshake: Final Ack lost:

Host 1 Host 2 Host 1

Host 2

Send DR
+ start timer

Release
connection

Send Ack

Response lost:

—
4———“'—25————————
— o

Host 1

Send DR

+ start timer
| |
| |

u
Timeout:
Send DR
+ start timer

Release
connection,
Send Ack

Host 2

— o

Send DR
+ start timer

Release
connection

Send DR

+ start timer

Send DR
+ start timer

Release
connection

Send DR
+ start timer

—

Host 2

DR

Release /
connection

Send Ack ACK ,j
Response and subsequent DR lost:

Host 1
Send DR D
+ start timer \

Timeout:
Send DR
+ sta.rt timer

. om
N timeouts:
Release
connection

%7 DR —
ACK 1

Send DR
+ start timer

Timeout:
Release
connection

Send DR
J.r start timer

Timeout:
Release
connection

© Peter R. Egli 2017

14/21

Rev. 3.50

Transport Protocols peteregli.net

5. Elements of transport protocols (10/14)

Flow control and buffering:

Problem:

The sender process may send at much higher speed than the receiver process can handle

the data thus causing overflow (= packet loss).

Proposed solution:

The receiver buffers incoming packets.

A sliding window mechanism provides a “backpressure” to the sender process when the buffer
is imminent to overflow (or better prevents the receive buffer from becoming full in

the first place). The receiver process continuously tells the sending process how much

empty space is left in its receive buffer. The sender process never sends more data than can be
accommodated in the receive buffer.

More details see TCP flow control.

Buffer info update:
Currently empty space for 5 packets

<

e |3 B

Empty space
Buffer A in buffer
(send buffer)

\.

Buffer B
(receive buffer)

) 15/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

6. Elements of transport protocols (11/14)

Multiplexing:

Multiplexing in the transport layer can be used for optimization.

a. Upward multiplexing:

Traffic from a “data stream” is distributed over several transport connections (TSAPs). An
application may use multiple TCP connections to improve throughput (TCP’s throughput
depends on delay, so overall throughput may be improved over physical lines with high delay).
b. Downward multiplexing:

Many “data streams” share the same transport connection using multiple NSAPs, possibly over
multiple network interfaces (load balancing). Stream Control Transmission Protocol (SCTP) is
a transport protocol that may use downward multiplexing (multi-hnoming).

a. Upward multiplexing: b. Downward multiplexing:

TSAP TSAP
NSAP NSAP
Phys. Phys.
ports ports

_ 16/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols

peteregli.net

7. Elements of transport protocols (12/14)

Crash recovery (1/2):
Problem:

A crash of one host (server) during the transmission leads to a connection loss which results

in data loss.
Proposed Solution:

The client retransmits only unacknowledged packets.

But:

() Does not work in all cases because
the server sends the ACK and writes the
data to the application sequentially
(see next slide).

Host 1
(client)

Host 2
(file server)

— "

ACK

—

ACK

(broadcast)
DATAn
Duplicate DATAN

or missing DATAN

DAT An \
Crash announcement

Host
crash

y

packet!

write

]

© Peter R. Egli 2017

17/21
Rev. 3.50

Transport Protocols peteregli.net

7. Elements of transport protocols (13/14)

Crash recovery (2/2):

No matter what the strategy of the hosts is, it is impossible to recover 100%-ly and
transparently to the application from transport layer crashes. More generally: A crash at layer N
can only be handled at layer N+1 (a system crash is a crash at every layer).

Thus:

It is left to the application layer to handle crashes of the remote host (client or server).
Generally applications detect that the remote host has died and then simply restart the
connection and retransmit everything.

. Result:
Strategy used by the receiving host OK = Protocol works correctly
DUP = Protocol creates a duplicate message
First ACK, then write First write, then ACK LOST = Protocol loses a message
Strategy used by State:
the sending host AC(W) | AWC | C(AW) | C(WA) WAC WC(A) SO = No unacknowledged packet outstanding
S1 =1 unacknowledged packet outstanding
Always retransmit OK DUP OK OK DUP DUP
Action:
_ A = Server sending acknowledgment
C = Crashing
Retransmit in SO OK DUP LOST LOST DUP OK
Retransmit in S1 LOST OK OK OK OK DUP

Source: http://authors.phptr.com/tanenbaumcn4/

_ 18/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

8. Elements of transport protocols (14/14)

Programming API:

The programming API of the transport layer depends on the platform / language / framework
that is used. However, the transport APIs of different platforms are usually very similar.

A generic API of a connection-oriented transport protocol could look as follows:

AT Description

(function) P
This function blocks until another process Process A

LISTEN tries to connect (calls CONNECT), thus does a

assive open.
P P CONNECT() CONNECTION REQUEST LISTEN(Q)
Sends a connection request packet, thus does R
an active open.

CONNECT . . SEND() DATA RECEIVE()
This function is the counterpart to the LISTEN R
function.

RECEIVE() DATA SEND()

SEND Send user data. <

DISCONNECT() DISCONNECT REQUEST

RECEIVE Blocks until a user data packet arrives. >

DISCONNECT Sends a'dlsconnect request to close the
connection.

_ 19/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

9. Transport layer characteristics (1/2)
A transport layer protocol is either connection-oriented or connection-less.

Connection-oriented transport protocols:

The peers establish a connection prior to a data exchange.
This is similar to a telephone line that needs setting up a connection prior to a conversation.

Connection-less transport protocols:
The peers send packets without a prior connection establishment.
This is similar to the traditional postal service.

5% B D% B D% BB~
CEE s 99D R by T

) 20/21
© Peter R. Egli 2017 Rev. 3.50

Transport Protocols peteregli.net

9. Transport layer characteristics (2/2)
Reliable versus unreliable service:

Transport protocols provide reither eliable (guaranteed delivery) or unreliable (best-effort)
service.

Combinations:
The characteristics connection-oriented / connection-less and reliable / unreliable can be
combined. Usually connection-oriented protocols provide reliable transport service.

Reliable Unreliable
Connection-oriented TCP, SCTP -
Connection-less RUDP UDP
UDP: Unreliable, connection-less message (datagram) delivery protocol.
TCP: Reliable, connection-oriented stream transfer protocol.
SCTP: Reliable, connection-oriented message transfer protocol.

RUDP: Reliable UDP (mixture between TCP and UDP)

21/21

© Peter R. Egli 2017 Rev. 3.50

