
© Peter R. Egli 2019
1/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Peter R. Egli
peteregli.net

INTRODUCTION TO TCP, THE INTERNET'S
STANDARD TRANSPORT PROTOCOL

TCP
TRANSMISSION CONTROL

PROTOCOL

© Peter R. Egli 2019
2/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Contents

1. Transport layer and sockets

2. TCP (RFC793) overview

3. Transport Service Access Point (TSAP) addresses

4. TCP Connection Establishment

5. TCP Connection Release

6. TCP Flow Control

7. TCP Error Control

8. TCP Congestion Control RFC2001

9. TCP Persist Timer

10. TCP Keepalive Timer – TCP connection supervision

11. TCP Header Flags

12. TCP Header Options

13. TCP Throughput / performance considerations

14. A last word on „guaranteed delivery“

© Peter R. Egli 2019
3/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

1. Transport layer and sockets
➔ The transport layer is made accessible to applications through the socket layer (API).

The transport layer runs in kernel space (Operating System) while application processes run

in user space.

Upper Layers

Application

Network Layer IP

Data Link Layer

Physical LayerOSI Layer 1

OSI Layer 2

OSI Layer 3

OSI Layer 4

OSI Layer > 4

Transport Layer TCP/UDP

Socket = API

Kernel

Space (OS)

User Space

(application)
TSAPs

(sockets)

DL Frames

IP Packet

TCP Segment

Bits

Data units:

Application

message

© Peter R. Egli 2019
4/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

2. TCP (RFC793) overview
➔ TCP is a byte stream oriented transmission protocol:

N.B.: The size of application data chunks (data units passed over socket interface)

may be different on the sending and receiving side; the segments sent by TCP may

again have different sizes.

➔ TCP error control provides reliable transmission (packet order preservation, retransmissions

in case of transmission errors and packet loss).

➔ TCP uses flow control to maximize throughput and avoid packet loss.

➔ Congestion control mechanisms allow TCP to react and recover from network congestion.

TCP

App

300

500

150

100

700

150

TCP

App

210

600

140

Application

writes

TCP Segments

Socket

interface

Socket

interface

Application

reads

© Peter R. Egli 2019
5/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

3. Transport Service Access Point (TSAP) addresses (1/3)
➔ TSAPs are identified by 16bit port numbers. 65536 port numbers are available (0...65535, but

0 is never used).

IP Header

TCP Header

© Peter R. Egli 2019
6/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

3. Transport Service Access Point (TSAP) addresses (2/3)
➔ Each TSAP (TCP port) is bound to at most 1 socket, i.e. a TCP port can not be opened

multiple times.

IP 192.168.1.1

TCP

Data Link

Physical Link

IP 213.4.3.2

TCP

Data Link

Physical Link

Application

process

TSAP 1208

(port number)

NSAP

Data Link Layer

Physical Layer

Network Layer

Transport Layer

Application Layer

192.168.1.131452213.4.3.2 1208

213.4.3.21208192.168.1.1 31452

Source

Port

Source

IP
Dest.

Port

Dest.

IP

Server

process

TSAP 31452

(port number)

NSAP

© Peter R. Egli 2019
7/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

ICANN (former IANA) Well-known ports [1, 1023] (Standard ports, e.g. POP3 110)

Registered ports [1024, 49151]

Dynamic/private ports [49152, 65535]

BSD Reserved ports [1, 1023]

Ephemeral ports [1024, 5000]

BSD servers [5001, 65535]

SUN solaris 2.2 Reserved ports [1, 1023]

Non-priviledged ports [1024, 32767]

Ephemeral ports [32768, 65535]

ICANN: Internet Corporation for Assigned Names and Numbers

IANA: Internet Assigned Numbers Authority

BSD: Berkeley Software Distribution

Ephemeral means „short-lived“ (not permanently assigned to an application).

3. Transport Service Access Point (TSAP) addresses (3/3)
➔ There are different definitions for the port ranges:

© Peter R. Egli 2019
8/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

4. TCP Connection Establishment (1/4)
➔ A TCP connection is established with 3 TCP packets (segments) going back and forth.

➔ 3-way handshake (SYN, SYN ACK, ACK) is used to

synchronize sequence and acknowledge numbers; after 3-way

handshake the connection is established.

➔ Host1 performs an „active open“ while host2 does a „passive

open“.

➔ A connection consists of 2 independent half-duplex

connections. Each TCP peer can close its (outgoing) TCP

half-duplex connection any time independently of the other.

➔ A connection can remain open for hours, days, even months

without sending data, that is there is no heartbeat poll

mechanism!

➔ The Ack-number is the number of the next byte expected by

the receiver.

➔The SYN occupies 1 number in the sequence number space

(even though a SYN segment usually does not carry user data)!

© Peter R. Egli 2019
9/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

4. TCP Connection Establishment (2/4)
➔ In case of a call collision only 1 connection is created.

Usually Internet applications are client/server where clients do active open and servers passive

open (thus no connection establishment collisions possible).

In peer-2-peer applications collisions are possible; e.g. BGP (Internet backbone routing) where

BGP speakers establish TCP connections with each other.

Host 1 Host 2

© Peter R. Egli 2019
10/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Host 1 Host 2

Demo: Telnet connection to closed port (telnet <server IP> 12345).

4. TCP Connection Establishment (3/4)
➔ If no server is listening on the addressed port number TCP rejects the connection

and sends back a RST (reset) packet (TCP segment where RST bit = 1).

© Peter R. Egli 2019
11/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Connection 1: 208.1.2.3 / 3544 / 177.44.4.2 / 80

Connection 2: 208.1.2.3 / 3545 / 177.44.4.2 / 80

Connection 3: 17.6.5.4 / 37659 / 177.44.4.2 / 80

TCP port = 3544

208.1.2.3

Host 1

TCP port = 37659

17.6.5.4

TCP port = 80

177.44.4.2

TCP port = 3545

208.1.2.3

Host 1

4. TCP Connection Establishment (4/4)
➔ A TCP connection is identified by the quadruple source/destination IP address and

source/destination port address.

If only one of the addresses of this quadruple is different the quadruple identifies a different

TCP connection.

Host 2

Host 3

© Peter R. Egli 2019
12/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

5. TCP Connection Release (1/2)
➔ The 2 half-duplex connections are closed independently of each other.

➔ Each host closes “its” half-duplex connection independently of the other

(that means the closing of the 2 unidirectional connections is unsynchronized).

➔ Host1 does an active close while host2 a passive close.

➔ Connection closing is a 4-way handshake and not a 3-way handshake since

the closing of the half-duplex connections is independent of each other.

➔ Half-close: only one half-duplex connection is closed (still traffic in the other direction).

➔ FIN segments occupy 1 number in the sequence number space (as do SYN segments)!

Application calls close()

Host 1 Host 2

FIN

FIN ACK

Half-duplex connection Host1 → Host2 closed.

Half-duplex connection Host2 → Host1 still open.

FIN

FIN ACK
Both half-duplex connections closed.

Both half-duplex

connections established

Deliver EOF (End Of File) to application.

Application calls close()

© Peter R. Egli 2019
13/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Host 1 Host 2

FIN

ACK

FIN

ACK

Both half-duplex

connections establishedNormal 4-way

close:

Host 2Host 1

FIN

FIN, ACK

ACK

Both half-duplex

connections established3-way

close:

Host 1 Host 2

FIN FIN

ACKACK

Both half-duplex

connections establishedSimultaneous

close:

Half-

close:

➔Few applications use half-close,

e.g. UNIX rsh command:
#rsh <host> sort < datafile

This command is executed remotely.

The command needs all input from

Host1. The closing of the connection

Host1→ Host2 is the only way to

tell Host2 that it can start executing

the command.

The output of the command is sent

back to Host1 through the still

existing half-duplex connecion

Host2 → Host1.

Host 1 Host 2

FIN

ACK of FIN

Data

ACK (Data)

Both half-duplex

connections established

FIN

ACK of FIN

5. TCP Connection Release (2/2)
➔ Different scenarios as to how both half-duplex connections are closed:

© Peter R. Egli 2019
14/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

TCP Header

Window size

advertisment

TCP fields involved in

connection setup and flow control

ISN Initial

Sequence Number

6. TCP Flow Control (1/10)
➔ Sliding window mechanism:
▪ Unlike lock-step protocols, TCP allows

data burst for maximizing throughput.

▪ The receiver advertises the size of receive buffer.

▪ The sequence and acknowledge numbers are

per byte (not per segment/packet).

▪ The receiver‘s ack number is the number of the

next byte it expects; this implicitly acknowledges

all previously received bytes. Thus acks are cumulative,

Ack=X acknowledges all bytes up to and including

X-1.

© Peter R. Egli 2019
15/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

1

3-way handshake for connection establishment. Through corresponding socket calls (indicated by ‚socket()..‘) host ‚A‘ and ‚B‘

open a TCP connection (host ‚A‘ performs an active open while host ‚B‘ listens for an incoming connection request). Host ‚A‘

and ‚B‘ exchange and acknowledge each other the sequence numbers (ISN Initial Sequence Number). Host ‚A‘ has a receive

buffer for 6000 bytes and announces this with Win=6000. Host ‚B‘ has a receive buffer for 10000 bytes and announces this with

Win=10000. Note that the SYNs occupy 1 number in the sequence number space thus the first data byte has Seq=ISN+1.

2
Application Process (AP) ‚A‘ writes 2KB into TCP. These 2KB are stored in the transmit buffer (Tx buffer). The data remains

in the Tx buffer until its reception is acknowledged by TCP ‚B‘. In case of packet loss TCP ‚A‘ has the data still in the

Tx buffer for retransmissions.

3
TCP ‚A‘ sends a first chunk of 1500 bytes as one TCP segment. Note that Seq=1001 = ISN+1. These 1500 bytes are stored

in TCP ‚B‘s receive buffer.

4
TCP ‚A‘ sends a chunk of 500 bytes. Again, these 500 bytes are stored in TCP ‚B‘s receive buffer (along with the previous

1500 bytes). The sequence number is Seq=2501 = previous sequence number + size of previous data chunk.

Note that the initial 2KB data are still in TCP ‚A‘s Tx buffer awaiting to be acknowledged by TCP ‚B‘.

5
TCP ‚B‘ sends an acknowledge segment acknowledging successful reception of 2KB. This is indicated through Ack=3001

which means that TCP ‚B‘ expects that the sequence number of the next data byte is 3001 or, in other words, the sequence

number of the last data byte successfully received is 3000. Upon reception of the acknowledge TCP ‚A‘ flushes the Tx buffer.

6
AP ‚B‘ reads out 2KB with 1 socket call. Application ‚B‘ may have called ‚receive()‘ much earlier and only now

TCP ‚B‘ (the socket interface) unblocked the call and returned the chunk of 2KB data.

The 2KB data are deleted from host ‚B‘s Rx buffer.

7

TCP ‘B’ sends a pure window update segment to signal to TCP ‘A’ that the receive window size is now 10000 again (Rx buffer).

Note that a real TCP implementation would not send a window update if the Rx buffer still has reasonable free capacity.

A real TCP implementation would wait for more data to arrive, acknowledge this next data and together with the acknowledge

segment also signal the new receive window size. Only when the Rx buffer’s capacity falls below a threshold it is advisable to

send a TCP segment merely updating the window size.

6. TCP Flow Control (2/10)

© Peter R. Egli 2019
16/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8 AP ‚A‘ writes 4KB into TCP. Shortly after application ‚B‘ writes 2KB into TCP.

9 TCP ‚A‘ sends a chunk of 1500 bytes as one TCP segment. Seq = 3001 = last sequence number + size of last data segment.

TCP ‚B‘ sends a chunk of 1500 bytes as one TCP segment. Seq = 4001 = ISN + 1 (since it is the first TCP segment with data).

Win = 8500 = Rx buffer size – size of data in buffer. Ack = 4501 = sequence number of last received segment + size of data.

TCP ‚A‘ deletes the acknowledged 1500 bytes from the Tx buffer (they are successfully received by TCP ‚B‘, even though

not necessarily received by application ‚B‘; thus these 1500 do not need to be kept in the Tx buffer for retransmissions and can

be deleted).

10

AP ‚A‘ writes another 2KB into TCP ‚A‘. These 2 KB are stored in TCP ‚A‘s Tx buffer along with previous 2.5KB of data.

Around the same time AP ‚B‘ reads 1KB of data from its socket. These 1KB are immediately freed from the Rx buffer to make

room for more data from TCP ‚A‘.

11

TCP ‚B‘ sends a chunk of 500 bytes (Seq = 5501 = last sequence number + data size of last segment). The window update in

this segment indicates that the Rx buffer has room for 9500 bytes.
12

TCP ‚A‘ sends a segment with 1000 bytes. TCP ‚B‘ writes this data into its Rx buffer there joining the previous 500 byte.

Shortly after AP ‚B‘ reads 1KB from its socket interface leaving 500 byte of data in the Rx buffer.13

14

TCP ‚A‘ sends a segment with 1000 bytes. TCP ‚B‘ writes this data into its Rx buffer there joining the previous 500 byte.

Shortly after AP ‚B‘ reads 1KB from its socket interface leaving 500 byte of data in the Rx buffer.

Thereupon TCP ‚A‘ sends an acknowledgment segment with Ack= 4001 + sizes of last 2 received data segments. This Ack

segments makes TCP ‚B‘ delete the 2KB in its Tx buffer since these are no longer needed for possible retransmissions.

15
TCP ‚A‘ sends a segment with 1500 bytes. TCP ‚B‘ writes this data into its Rx buffer there joining the previous 500 byte.

Shortly after AP ‚B‘ reads 2KB from its socket interface thus emptying the Rx buffer.

6. TCP Flow Control (3/10)

© Peter R. Egli 2019
17/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

16

TCP ‚B‘ sends an acknowledge segment acknowledging successful reception of all data so far received.

This leaves 2KB of unsent data in TCP ‚A‘s Tx buffer.

Since no data is in the Rx buffer the receive window size is at its maximum again (Win=10000).

Around the same time AP ‚A‘ reads out 2KB from the Rx buffer.

17 TCP ‚A‘ sends a segment with 1500 bytes. TCP ‚B‘ writes this data into its Rx buffer.

18
TCP ‚A‘ sends a last data segment with 500 bytes. TCP ‚B‘ writes this data into its Rx buffer there joining the previous 1500

bytes. Shortly after that AP ‚B‘ reads out 2KB and thus empties the Rx buffer.

19 TCP ‚B‘ sends an acknowledgment segment that acknowledges all data received from TCP ‚A‘.

20

AP ‚A‘ is finished with sending data and closes its socket (close()). This causes TCP ‚A‘ to send a FIN segment in order to

close the half-duplex connection ‚A‘→‘B‘.

TCP ‚B‘ acknowledges this FIN and closes the connection ‚B‘→‘A‘ with a FIN.

Note well that FINs also occupy 1 number in the sequence number space. Thus the acknowledgment sent back by TCP ‚B‘

has Ack=previous sequence number in ‚A‘s FIN segment + 1.

6. TCP Flow Control (4/10)

Legend:

CTL = Control bits in TCP header (URG, ACK, PSH, RST, SYN, FIN); if a bit is listed its value is 1

Seq = Sequence number

Win = Window size

Ack = Acknowledgement number

Data = Size of application data (TCP payload)

© Peter R. Egli 2019
18/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

<CTL=SYN, ACK><Ack=1001><Seq=4000><Win=10000>

<CTL=SYN><Ack=0><Seq=1000><Win=6000>

<CTL=ACK><Ack=4001><Seq=1001><Win=6000>

socket()... socket()...

send(2KB)

<CTL=ACK><Ack=4001><Seq=1001><Win=6000>

<Data=1500B>

<CTL=ACK><Ack=4001><Seq=2501><Win=6000>

<Data=500B>

<CTL=ACK><Ack=3001><Seq=4001><Win=8000>

<Data=0 (no data)>

Rx Buffer

Tx Buffer
2
K

Tx Buffer

Rx Buffer
2
K

Tx Buffer

Rx Buffer

2
K

Tx Buffer

Rx Buffer

1
.5

Rx Buffer

Tx Buffer

2
K

Rx Buffer

Tx Buffer

2
K

Rx Buffer

Tx Buffer

Tx Buffer

Rx Buffer

1

2

3

4

5

TCP ‚A‘AP ‚A‘ TCP ‚B‘ AP ‚B‘

© Peter R. Egli 2019
19/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

2
K

1
.5

4
K

Rx Buffer

Tx Buffer

Tx Buffer

Rx Buffer

receive(2KB)

2
K

Rx Buffer

Tx Buffer

Tx Buffer

Rx Buffer

<CTL=ACK><Ack=3001><Seq=4001><Win=10000>

<Data=0 (no data)>

Rx Buffer

Tx Buffer
send(2KB)

Tx Buffer

Rx Buffer

send(4KB)

2
K

4
K

Tx Buffer

Rx Buffer

Rx Buffer

Tx Buffer

<CTL=ACK><Ack=4001><Seq=3001><Win=6000>

<Data=1500B>

<CTL=ACK><Ack=4501><Seq=4001><Win=8500>

<Data=1500B>

6

7

8

9

10

TCP ‚A‘AP ‚A‘ TCP ‚B‘ AP ‚B‘

1
.5

2
.5

Tx Buffer

Rx Buffer

2
K

1
.5

Rx Buffer

Tx Buffer

© Peter R. Egli 2019
20/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

2
K

0
.5

0
.5

2
K

0
.5

0
.5

4
.5

K

TCP ‚A‘AP ‚A‘ TCP ‚B‘ AP ‚B‘

send(2KB) receive(1KB)

2
K

Rx Buffer

Tx Buffer

1
.5

Tx Buffer

Rx Buffer

4
.5

K

2
K

Rx Buffer

Tx Buffer

2
K

Tx Buffer

Rx Buffer
<CTL=ACK><Ack=4501><Seq=5501><Win=9500>

<Data=500B>

4
.5

K

Rx Buffer

Tx Buffer

2
K

Tx Buffer

Rx Buffer

<CTL=ACK><Ack=6001><Seq=4501><Win=4000>

<Data=1000B>

4
.5

K

Tx Buffer

Rx Buffer

Rx Buffer

Tx Buffer

receive(1KB)

<CTL=ACK><Ack=6001><Seq=5501><Win=4000>

<Data=1500B>

<CTL=ACK><Ack=6001><Seq=5501><Win=4000>

<Data=0 (no data)>

1
K

receive(2KB)

11

12

13

14

1
K

4
.5

K

2
K

Tx Buffer

Rx Buffer

Rx Buffer

Tx Buffer

15

2
K

© Peter R. Egli 2019
21/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

1
.5

TCP ‚A‘AP ‚A‘ TCP ‚B‘ AP ‚B‘

16

2
.0

Tx Buffer

Rx Buffer

<CTL=ACK><Ack=7001><Seq=6001><Win=10000>

<Data=0 (no data)>

Rx Buffer

Tx Bufferreceive(2KB)

2
K

2
.0

Tx Buffer

Rx Buffer

Rx Buffer

Tx Buffer

<CTL=ACK><Ack=6001><Seq=7001><Win=6000>

<Data=1500B>
2
.0

Tx Buffer

Rx Buffer

Rx Buffer

Tx Buffer

<CTL=ACK><Ack=6001><Seq=8501><Win=6000>

<Data=500B>

<CTL=ACK><Ack=9001><Seq=6001><Win=10000>

<Data=0 (no data)>

Rx Buffer

Tx Buffer

Tx Buffer

Rx Buffer

receive(2KB)

2
K

<CTL=FIN, ACK><Ack=6001><Seq=9001><Win=6000>

<CTL=FIN,ACK><Ack=9002><Seq=6001><Win=10000>

<CTL=ACK><Ack=6002><Seq=9002><Win=6000>

17

18

19

20

close()
close()

© Peter R. Egli 2019
22/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (5/10)
➔ Sliding window (TCP) versus lock-step protocol:

1. Lock-step protocol: sender must wait for Ack before sending next data packet.

2. Sliding window: sender can send (small) burst before waiting for Ack.

Lock-step protocol:

Sender Receiver

Data

Ack

Data

Ack

Data

Ack

Sliding window protocol:

Sender Receiver

Ack

Data

Data

Data

Data

Data

Data

Ack

Buffer

Sender

blocked

Sender

blocked

Sender

blocked

© Peter R. Egli 2019
23/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (6/10)
➔ Sliding window mechanism:

Window size, acknowledgments and sequence numbers are byte based, not segment based.

1 2 3 4 5 6 7 8 9 10

Sending application

writes (to socket)

Sending application

writes (to socket)

Sending application

writes (to socket)

The lower window edge is

incremented as bytes are acknowledged;

it is initialized to ISN+1.

The upper window edge is

incremented by the number in window field.

It is initialized to ISN+1 + advertised window.
Send window

Bytes waiting

to be

acknowledged

Bytes

Time or

sequence number

Bytes waiting to be sent

in send buffer

Bytes sent and acknowledged Can be

sent

anytime

© Peter R. Egli 2019
24/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (7/10)
➔ TCP layer and application interworking:

ACK and window size advertisments are „piggy-backed“ onto TCP segments.

TCP sender and receiver „process“ on a host are totally independent of each other in terms

of sequence and acknowledge numbers.

TCP ‘A’AP ‘A’

AP writes

AP reads

6
7
8

Tx Buffer

Sender

Process

3

Rx Buffer

Receiver

Process

TCP ‘B’ AP ‘B’

AP writes

AP reads

5
6

Rx Buffer

Receiver

Process

4
5
6

Tx Buffer

Sender

Process

TCP connection =

2 half-duplex

connections

© Peter R. Egli 2019
25/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (8/10)
➔ Delayed acknowledgments for reducing number of segments:

The receiver does not send Acks immediately after the receipt of an (error-free) packet but

waits up to ~200ms/500ms if a packet is in the send buffer (depends on host OS).

If so it „piggybacks“ the Ack onto the transmit packet; if no transmit packet is available the

receiver sends an Ack latest after ~200ms/500ms.

Demo: Telnet connection with Echo:

➔ Without ‘delayed ack’ 4 segments per character (character, echoed character, 2 acks).

➔ With ‘delayed ack’ 2 segments (character, ack).

Sender Receiver

Data

Data + ACK

Up to 500ms

With delayed acks:

Data

Sender Receiver

Data

Ack

Ack

Without delayed acks:

© Peter R. Egli 2019
26/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (9/10)
➔ Nagle‘s Algorithm for further optimization:

In interactive applications (Telnet) where single bytes come in to the sender from

the application sending 1 byte per TCP segment is inefficient (98% overhead).

When activated Nagle‘s algorithm sends only the first byte and buffers all subsequent bytes

until the first byte has been acknowledged. Then the sender sends all so far buffered bytes

in one segment. This can save a substantial number of TCP segments (IP packets) when the

user types fast and the network is slow.

Sender Receiver

ACK

With Nagle‘s algorithm:
AP

Data

Data

RTT

RTT Round Trip Time (time between sending a packet and receiving the response).

Sender Receiver

Without Nagle‘s algorithm:
AP

Data

Data

Data

Data

Data

© Peter R. Egli 2019
27/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

6. TCP Flow Control (10/10)
➔ Silly window syndrome:

This Problem occurs when the receiver reads out only small amounts of bytes from the receive

buffer and the sender sends relatively fast (and in large chunks). Then the flow-control

mechanism becomes inefficient and ruins TCP performance.

Solution: Clark‘s algorithm.

➔ The receiver only sends window updates when there is sufficient space in receive buffer

(sufficient = min(MSS, half buffer size)).

➔ The sender must not send „tynigrams“ (small segments).

IP packetPayloadTCPIP

TCP

segment (MSS)

MSS: Maximum Segment Size

© Peter R. Egli 2019
28/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

7. TCP Error Control (1/6)
➔ Out of sequence segments:

Out of sequence segments are not dropped but buffered for later use.

Sender Receiver

ACK=X+512, Win=3584

Seq=X

Seq=X+1024

Seq=X+512

SYN

SYN ACK

ACK, Win=4096

ACK=X+1536

The receiver does not throw away out-of-sequence

segment but waits a little bit for the outstanding

segment; the receiver acknowledges then all

bytes correctly (error-free, in order) received.

© Peter R. Egli 2019
29/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

7. TCP Error Control (2/6)
➔ Lost packets cause retransmissions triggered by the expiry of the retransmission timer:

Host 1 Host 2

(1) SEQ = X

Both half-duplex

connections established

(1)

write (1) to RB1
ACK=X+512

1

Retransmission

timer stopped

(6) SEQ = X+2560(6)
6

network

temporarily

out of order

ACK=X+2560

6
7
8

(6) SEQ = X+2560

Retransmission

timer expires

ACK=X+3072

5 write (5) to RB

6 write (6) to RB

(6)

Retransmission

timer stopped
7
8

(7) SEQ = X+3072

7 write (7) to RB

(7)
7
8

ACK=X+3584

MSS: Max. segment

size (=512 in example).

Retransmission timer

stopped (not expired).

Retransmission timer

expired.

Packet Loss.

RB: Application’s

receive buffer

© Peter R. Egli 2019
30/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

7. TCP Error Control (3/6)
➔ Lost packets / retransmissions, 3 acks („fast retransmit“):

Host 1 Host 2

ACK=X+512

(1) SEQ = X

Both half-duplex

connections established

1(1)

(2) SEQ = X+512

write (1) to RB1

(2)

1
2

(3) SEQ = X+1024

2
3

3

(4) SEQ = X+1536

2
3
4

3
4

ACK=X+512

(3)

(4)

(5) SEQ = X+2048

ACK=X+512
2
3
4
5

3
4
5

(5)

Retransmission

timer stopped

(2) SEQ = X+512 (retransmission)

3rd ACK

received

3
4
5
2

ACK=X+2560

Retransmission

timers stopped

write (2) (3) (4) (5) to RB

(6) SEQ = X+2560

6

(6)
6

MSS: Max. segment

size (=512 in example).

Retransmission timer

stopped (not expired).

Retransmission timer

expired.

Packet Loss.

RB: Application’s

receive buffer

© Peter R. Egli 2019
31/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

7. TCP Error Control (4/6)
➔ Lost packets / retransmissions, lost ack:

Host 1 Host 2

(1) SEQ = X

Both half-duplex

connections established

write (1) to RB1
ACK=X+512

1
(1)

Retransmission

timer stopped

(6) SEQ = X+2560(6)
6

ACK=X+2560

ACK=X+3072

5 write (5) to RB

6 write (6) to RB

Retransmission

timer expires (6) SEQ = X+2560

6 discard (6); return ACK
ACK=X+3072

(6)
6

MSS: Max. segment

size (=512 in example).

Retransmission timer

stopped (not expired).

Retransmission timer

expired.

Packet Loss.

RB: Application’s

receive buffer

➔ TCP does not specify how often a specific segment has to be retransmitted (in case of

repeated packet loss of the same segment). Typical values are max. 5 or 8 retransmissions of the

same segment (if more retransmissions necessary connection is closed).

© Peter R. Egli 2019
32/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Solution:

Constantly adjust RTO based on measurement of RTT. For each segment that was sent start a

(retransmission) timer.

RTO = RTT + 4 * D

where D is mean deviation as per Dnew=αDold + (1- α) * |RTT – M|

M = observed RTT value for a specific ACK

α = smoothing factor that determines how much weight is given to the old value (typ. α=7/8)

7. TCP Error Control (5/6)
➔ Retransmission timer (RTO Retransmission Timeout) assessment:

Problem:

a. Single data link ➔ RTO = (2 + e)*RTT where e<<2 (RTT rather deterministic).

b. Internet (multiple data links) ➔ RTT varies considerably, also during lifetime of a TCP conn.

© Peter R. Egli 2019
33/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

7. TCP Error Control (6/6)
➔ TCP Header Checksum Calculation:

TCP uses a 16-bit checksum for the detection of transmission errors (bit errors). The checksum

field is the 16 bit one's complement of the one's complement sum of all 16 bit words in the

pseudo IP header, TCP header and data (the checksum field is initialized with zeroes before

the checksum calculation). By including the IP header in the checksum calculation TCP depends

on IP; it may not run on anything other than IP (this is a violation of the layering principle!).

Pseudo

header

Checksum calculated

over pseudo header,

TCP header and

data

© Peter R. Egli 2019
34/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (1/6)
➔ Congestion control is a control (feedback control) mechanism to prevent congestion
(congestion avoidance).

Problem (a): A fast network feeding a low capacity receiver (congestion in receiver).

Problem (b): A slow network feeding a high-capacity receiver (congestion in network).

Aggregate bandwidth

exceeds available

bandwidth of output link.

Packets dropped

by router 3.

Congestion can always occur (aggregate ingress

Bandwidth exceeds egress bandwidth).

Router 1

Router 2

Router 3

© Peter R. Egli 2019
35/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (2/6)
➔Prior to 1988 TCP did not define a congestion control mechanism. TCP stacks just sent as

many TCP segments as the receiver’s buffer could hold (based on advertise window). With the

growth of the Internet router links became congested and thus buffers got full which resulted

in packet loss. Packet loss lead to retransmissions which in turn aggravated the congestion

problem.

➔ It became necessary to avoid congestion in the first place (it’s always better to
avoid a problem in the first place rather than cure it!).

➔ How to avoid congestion efficiently (ideas of Van Jacobson):
a. Sender can detect packet loss and interpret it as network congestion (this is in
most cases true; packet loss can however also be due to bit errors).
b. When a sender detects packet loss it should reduce the transmission rate quickly.
c. When there is no (more) congestion (no more packet loss) the sender can slowly
increase the transmission rate.
e. At the very beginning of a TCP session a sender does not know the maximum
possible transmission rate yet. Thus it should start slowly with sending segments
(„slow start“ procedure).
f. If a sender receives an ACK packet it knows that a segment has been received and
is no longer on the network (in transmission). This fact is used for the slow start
algorithm (see below). ➔ This procedure is „self-clocking“.

➔ Network stability is achieved through quickly reacting to bad news (packet loss), moderately
reacting to good news (no packet loss, all segments sent are acknowledged).

© Peter R. Egli 2019
36/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (3/6)
➔ Congestion control window:

A congestion control window is used in addition to the flow control window (both windows

work in parallel).

The max. number of segments that can be sent = min(Ws, Wc).

Ws = Flow control window

Wc = Congestion control window

Heavily loaded networks➔ flow of segments controlled by Wc.

Lightly loaded networks➔ flow of segments controlled by Ws.

4 5 6 7 8 9 10

Bytes waiting to

be acknowledged

Bytes waiting to be sent

in send buffer
Bytes sent and acknowledged

Can be

sent

anytime

321

© Peter R. Egli 2019
37/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (4/6)
➔ Normal congestion control window procedure: Slow start phase:

Wc starts opening „slowly“ from 1 segment

until threshold (SST) reached (exponential

growth of Wc).

Transmission number:

0 → 1 segment sent

1 → 2 segments sent (burst)

2 → 4 segments sent (burst)

etc.

Congestion avoidance phase:

Wc is increased by 1/Wc (linear growth)

until next threshold reached.

Constant phase:

Wc remains constant.
32

16

8
4
2

12345

Slow start

phase

64

Congestion avoidance

phase

Constant phase

(Wc fully open)

RTT

Wc remains constant

Wc increases by 1 segment for each 32 ACKs received

Wc increases by 1 segment for each ACK received (exponential growth)

Wc

segments or kbytes

Slow start threshold

3710 20 30

© Peter R. Egli 2019
38/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (5/6)
➔ Light congestion (reception of 3 duplicateAcks):

On receipt of 3 duplicate ACKS Wc is

reduced by half.

32

16

8
4
2

12345

64

RTT

Wc

segments/kbytes

Slow start threshold

3710 20 30

First set of 3 duplicate

ACKs received

Second set of 3 duplicate

ACKs received

Wc=34

Wc=17

Fast Recovery

© Peter R. Egli 2019
39/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

8. TCP Congestion Control RFC2001 (6/6)
➔ Heavy congestion (no reception of Acks):

When retransmission timer expires Wc

is immediately reset to 1. From there

slow-start restarts normally.

32

16

8
4
2

12345

64

RTT

Wc

segments/kbytes

Slow start threshold

3710 20 30

First RTO

Second RTO

Third RTO

© Peter R. Egli 2019
40/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

9. TCP Persist Timer (1/2)
➔ Problem: Possible deadlock situation in TCP flow control:

The receiver buffer is full thus the receiver sends an ACK with Win=0 (window is closed).

Thereafter data is read from the receiver buffer to the application. The receiver is ready again

to receive data and sends an ACK with Win>0 (window is re-opened). This segment however is

lost. Sender and receiver are now deadlocked: sender waits for the window to be re-opened,

the receiver waits for data.

Host 1 Host 2
Both half-duplex

connections established

ACK=X+2048, Win=0
3
4
5
6

4
5
6

write (3) to RB

ACK=X+2048, Win=512

sender and receiver

deadlocked

Packet Loss

© Peter R. Egli 2019
41/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

9. TCP Persist Timer (2/2)
➔ Solution: The sender sends a probe segments containing 1 single byte of data to invoke the

receiver to acknowledge previous bytes again.

Persist timer values are ascertained by a „exponential backoff algorithm“ that produces output

values from 5s (min.) to 60 (max.) seconds.

Host 1 Host 2
Both half-duplex

connections established

ACK=X+2048, Win=0

Persist

timer expires

3
4
5
6

4
5
6

write (3) to RB

ACK=X+2048, Win=512

(1)

Window Probe

SEQ=X+2048 (1 byte)

ACK=X+2049, Win=2048

SEQ=X+2049

Persist

timer stopped

7

Packet Loss

© Peter R. Egli 2019
42/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

10. TCP Keepalive Timer – TCP connection supervision (1/2)
➔ The keepalive timer is used to periodically check if TCP connections are still active.

Case 1: TCP connection is still alive (i.e. client is still alive and the connection open).

Host 1 (Client) Host 2 (Server)
Both half-duplex

connections established

Keep alive

timer expires

ACK=Y

Data Segment

2 hours

Keep Alive Probe

No data

SEQ=X-1
75s

ACK=X
Keep alive

timer stopped,

rearmed to 2h

2 hours

Server starts

keepalive timer

© Peter R. Egli 2019
43/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

10. TCP Keepalive Timer – TCP connection supervision (2/2)
➔ The keepalive timer is used to periodically check if TCP connections are still active.

Case 2: The TCP connection dead.

Host 1 (Client) Host 2 (Server)
Both half-duplex

connections established

Keep alive

timer expires

ACK=Y

Data Segment

2 hours

Keep Alive Probe 1

No data

SEQ=X-1
75s Keep alive

timer expires

75s Keep alive

timer expires

75s
Keep alive timer expires;

the connection is deleted

(not closed since

it is considered dead)

Keep Alive Probe 10

No data

SEQ=X-1

Keep Alive Probe 2

No data

SEQ=X-1
Keep Alive Probe 3

No data

SEQ=X-1

© Peter R. Egli 2019
44/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

11. TCP Header Flags (1/2)
➔ PUSH flag:

Problem: Segment size and time of transmit are determined by TCP (flow control, congestion

control, TCP does internal buffering). This is unsuitable for interactive applications like

X Windows, TELNET where data should be sent as soon as possible.

➔ Solution: With PUSH flag data can be expedited:

Sender: Send data immediately without further buffering.

Receiver: When receiving PUSH flag „pushes“ all buffered data to the

application (no further Buffering).

Sender Receiver

Data, PUSH=1

Ack

Data, PUSH=1

Ack

Send(data,PUSH)

Write immediately to

Application process

(no buffering in TCP)

Send(data,PUSH)

Write immediately to

Application process

(no buffering in TCP)

© Peter R. Egli 2019
45/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

11. TCP Header Flags (2/2)
➔ URGENT flag:

This flag allows a sender to place urgent (=important) data into the send stream; the

urgent pointer points to the first byte of urgent data; the receiver can then directly jump to

the processing of that data; example: Ctrl+C abort sequence after other data.

Sender Receiver

Send(data)

URGENT=1 indicates that

the urgent pointer in the header is

valid;

The receiving application process

may then process urgent data

(e.g. abort command).

Send(data,URGENT)
Data, URGENT=1

TCP header:

URG=1

URGPTR=2219

Urgent

data

Seq.# = 2144Seq.# = 2219

TCP segment

© Peter R. Egli 2019
46/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

12. TCP Header Options (1/3)
➔ Window scale option:

Problem: High-speed networks with long delay; network (transmission path) then stores large

amounts of data („long fat pipe“).

E.g. 155Mbps line with 40ms delay➔ 775Kbytes are underway in the transmission path

but the maximum window size is restricted to 65535 bytes (16 bit field).

Solution: With the window scaling option the window size can be increased (exponentially)

thus making the window large enough to „saturate“ the transmission path.
Lower window edge

incremented as bytes are acknowledged

initialized to ISN+1
Upper window edge

incremented by number in window field

initialized to ISN+1 + advertised window
Send window

Bytes waiting to

be acknowledged

Byte stream

Bytes waiting to be sent

in send buffer

Can be

sent

anytime

Required window size to fully utilize link bandwidth = Blink * Delaylink

e.g. long intercontinental fiberoptic line 155Mbps * 40ms = 775Kbytes

Max. window size = 65535 (16bit)

Bytes sent and

acknowledged

TCP Header

1=nop kind=3 len=3 shift count

Window size field remains unchanged,

but is scaled by window scale option

E.g. shift count=3: ➔ Ws * 23 = Ws * 8

E.g. shift count=0: ➔ Ws * 20 = Ws * 1

© Peter R. Egli 2019
47/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

12. TCP Header Options (2/3)
➔ Timestamp option:
Problem: RTO calculation would require a recomputation for each TCP

segment sent. Some TCP implementations recompute the RTO only once per

window (less processing power required). This is ok for slower links where

the sliding window contains only few TCP segments. On faster links this

behavior leads to inaccurate RTO computations (and thus less-than-optimal

flow control). The TCP timestamp option allows to accurately ascertain the RTO.

Enable timestamp and window scale option on Windows:

Registry: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Tcp1323Opts = 3

Sender Receiver

ACK=X+1024; TS=T1

SEQ=X; TS=T1

SYN; TS option request

SYN ACK; TS option ack

Option

negotiation

store TSrecent = T1SEQ=X+512; TS=T2 1

1
2

T1

RTT = T3 – T1

T2

SEQ=X+1024; TS=T4

write (1) (2) to RB

3

T4

T3

store TSrecent = T4

1=nop 1=nop kind=8 len=10

timestamp value

timestamp echo reply

Timestamp option in

TCP header

© Peter R. Egli 2019
48/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

Host 1 Host 2

ACK=X+512

(1) SEQ = X

(2) SEQ = X+512

(3) SEQ = X+1024

(4) SEQ = X+1536

ACK=X+512

SACK={X,X+511}, {X+1024,X+1535}

(5) SEQ = X+512

(6) SEQ = X+1536

SYN; SACK-permitted option

SYN ACK

ACK

1=nop 1=nop kind=4 len=2

12. TCP Header Options (3/3)
➔ SACK permitted option (selective retransmissions):

Receiver can request sender to retransmit specific segments (due to loss).

The SACK does not change the meaning of the ACK field; if the SACK option is not supported

by the sender TCP will still function (less optimally though in case of retransmissions).

kind=5 len relative origin

SACK-permitted option

SACK option

block size

Selective retransmissions of missing segments.

Packet Loss

Receiver signals contiguous blocks of successfully

received segments:

{X,X+511} = {left edge of data block, right edge of data block}

© Peter R. Egli 2019
49/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

13. TCP Throughput / performance considerations („goodput“) (1/2)
➔ TCP is delay sensitive!

max. throughput = Ws / RTT [Padhye 98]

This is not an exact formula and it is valid only for average RTT values.

The maximum throughput is bound by the window size Ws and decreases with increased

RTT (=delay). TCP as such is NOT suited for networks with long delays (e.g. satellite and

interplanetary links).

➔ TCP is not independent of the underlying network (as should be the case in theory)!

TCP was designed to run over wired networks (low Bit Error Rate BER, packet loss mostly

due to congestion). TCP performs badly on radio links (high BER, packet loss due to errors).

In case of packet loss on a radio link the sender should try harder instead slowing down.

Slowing down just further decreases the throughput.

On wired networks the sender should slow down in case of packet loss (caused by

congestion) in order to alleviate the problem.

How to handle TCP connection that spans a wired and a radio link?

➔ „Split TCP“: Effectively 2 separate TCP connections interconnected by the base station

passing TCP payload data between the connections. Each of the TCP connections is optimized

for their respective use. Example:

TCP accelerator devices for satellite links.

© Peter R. Egli 2019
50/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

13. TCP Throughput / performance considerations („goodput“) (2/2)
TCP adaptations for radio (satellite) links as per RFC2488, RFC3481:

a. Data link protocol:

Use data link protocols that do not do retransmissions and flow control or make sure that

retransmission mechanism and flow control of data link do not negatively affect TCP performance.

b. Path MTU discovery:

Path MTU discovery enables TCP to use maximum sized segments without the cost of

fragmentation/reassembly. Larger segments allow the congestion window to be more rapidly

increased (because slow start mechanism is segment and not byte based).

c. Forward Error Correction:

TCP assumes that packet loss is always due to network congestion and not due to bit

errors. On radio links (satellite, microwave) this is not the case – packet loss is primarily

due to bit errors. The congestion recovery algorithm of TCP is time consuming since it

only gradually recovers from packet loss. The solution is to use FEC to avoid false signals

as much as possible. FEC means that the receiver can detect and correct bit errors in the

data based on a FEC code.

d. Selective ACKs (SACK):

The TCP algorithms „Fast Retransmit“ and „Fast Recovery“ may considerably reduce TCP

throughput (because after a packet loss TCP gingerly probes the network for available

bandwidth; in a radio environment this is the wrong strategy). To overcome this use

selective ACKs (SACK) option to selectively acknowledge segments.

e. Window scale option:

Long delay in fast transmission links limits TCP throughput because large amounts of data are

underway but TCPs sliding window only allows up to 65536 bytes to be „in the air“.

To overcome this use the window scaling option thus increasing the size of the sliding window.

© Peter R. Egli 2019
51/51

Rev. 3.90

TCP - Transmission Control Protocol peteregli.net

14. A last word on „guaranteed delivery“
➔ TCP provides guaranteed transmission between 2 APs. That‘s it. There are

still zillions of reasons why things can fail! Thus it is still up to the application to

cater for application error detection and error handling (see RFC793 chapter 2.6 p.8).

Packet Loss

Host 1 Host 2
both half-duplex

connections established

TCP delivers data safely

and error-free between APs

(not less, not more)

Data gets lost/corrupted on its

way to the application process

(AP).

(1) SEQ = X

1

1

ACK=X+512

App

App

(1) SEQ = X

1

1

ACK=X+512

App

App

Data gets safely to the

application’s storage, but then is

overwritten (by some other

process, the app itself, hardware

failure ...).

(1) SEQ = X

1

1

ACK=X+512

App

App

The application starts a

transaction to store the data into

a database, but the transaction

fails.

