
© Peter R. Egli 2017
1/28

Rev. 4.70

Network Sockets peteregli.net

Peter R. Egli
peteregli.net

INTRODUCTION TO NETWORK SOCKET
PROGRAMMING AND CONCEPTS

NETWORK
SOCKETS

© Peter R. Egli 2017
2/28

Rev. 4.70

Network Sockets peteregli.net

Contents
1. What is a socket?

2. Socket = Interface to transport API

3. Routing in Network Layers

4. TCP socket „spawning“

5. Socket interface functions

6. Socket calls versus TCP segments

7. Socket calls versus UDP datagrams

8. Socket handle

9. Parameter marshalling / RPC transparency

10. Low level socket programming

11. UDP multicast sockets

12. TCP server socket: C/C++ versus Java example

13. Client socket: C/C++ versus Java example

14. IPv6 sockets

© Peter R. Egli 2017
3/28

Rev. 4.70

Network Sockets peteregli.net

1. What is a socket?
A socket is an interface for an application to connect to a host‘s network stack (part of the OS).

After connecting, an application is able to bidirectionally exchange data with other processes

on the same or another host.

Application Application Application

Socket interface

IP network

Network

stack (OS)

Network

stack (OS)

© Peter R. Egli 2017
4/28

Rev. 4.70

Network Sockets peteregli.net

IP

Socket

TCP

2. Socket = Interface to transport API (host‘s transport protocols)
A socket has a binding to an NSAP (with an IP address) and a TSAP (with a

TCP/UDP/SCTP port number). The NSAP may have a specific IP address or may represent all IP

addresses of the host (unspecified IP address = wildcard address = 0.0.0.0 = inaddr_any).

Network Ports

(e.g. Ethernet)

App

OSI Layer 1 (physical)

OSI Layer 2 (data link)

OSI Layer 3 (network)

OSI Layer 4 (transport)

Socket Interface

TSAP (Port #)

NSAP (IP Address)

Socket

Binding to port and

specific IP address

IP layer is router

(between interfaces

and transport layer)

Binding to port and

to inaddr_any

TSAP: Transport Service Access Point

NSAP: Network Service Access Point

© Peter R. Egli 2017
5/28

Rev. 4.70

Network Sockets peteregli.net

DL

PL

IP

Socket

TCP

DL

PL

3. Routing in Network Layers (1/4)
The routing of packets from and to a socket depends on the bind IP address.

7 80

IP1 IP2

4567

IP3 IP4

IP24567IPn9999

App

IP280IPn9999

IP17IPn9999

IP34567IPn9999

1.

1.

2. 2.

Network Ports

(e.g. Ethernet)

Source port
and IP addr.

1.1. 2.

Dest. port
and IP addr.

© Peter R. Egli 2017
6/28

Rev. 4.70

Network Sockets peteregli.net

3. Routing in Network Layers (2/4)
1. Specific IP address binding:

UDP socket:

If a UDP socket is bound to a specific IP address, only IP packets with this destination IP

address are routed to and received by this socket.

TCP socket:

In case of a listening TCP socket, only connection requests (inbound connection) addressed to

the bind IP are accepted by the socket.

2. inaddr_any binding:

If a socket is NOT bound to a specific IP address (INADDR_ANY = 0.0.0.0, wildcard IP address),

the socket is bound to all existing interfaces.

UDP socket:

A UDP socket receives any packet that contains the bind port number as target port.

TCP socket:

A listening TCP-socket bound to 0.0.0.0 is able to accept connections on all interfaces provided

that the destination port of the incoming connection request equals the bind port number.

Once the incoming connection is accepted, the created TCP-socket is bound to the destination

IP address of the incoming connection request.

© Peter R. Egli 2017
7/28

Rev. 4.70

Network Sockets peteregli.net

DL

PL

IP

Socket

TCP

DL

PL

3. Routing in Network Layers (3/4)
Localhost binding and routing of outbound packets:

7

IP1 IP2

4567

IP3 IP4

IP24567IPn9999

App

IP17IPn9999

IP34567IPn9999

127.0.0.1

23

App

3.

Outbound packet

Outbound packet

Outbound packet

Dest. port
and IP addr.

Source port
and IP addr. Network Ports

(e.g. Ethernet)

© Peter R. Egli 2017
8/28

Rev. 4.70

Network Sockets peteregli.net

3. Routing in Network Layers (4/4)
3. localhost binding:

If a socket is bound to “localhost”=127.0.0.1, then this socket receives only from applications

but not from the network.

Besides the local loopback interface (127.0.0.1 for IPv4, ::1 for IPv6), applications on the same

machine can also use an interface IP address for communication.

4. Outbound IP address:

The source address of outbound packets is either the bound IP address or the address of

the interface over which the packet is sent (if the socket is bound to INADDR_ANY).

N.B.: An outbound packet may also be sent over an interface other than the socket is bound to,

i.e. the routing is based on the IP layer’s routing table.

© Peter R. Egli 2017
9/28

Rev. 4.70

Network Sockets peteregli.net

4. TCP socket „spawning“

In TCP there exist 2 different socket types: server socket and client socket.

The server socket is used to accept incoming connections. When TCP receives

an incoming connection request on a server socket (SYN) it spawns a new (client) socket

on which the server process can send and receive data (after passing the new socket to a

newly „forked“ server process).

Client

AP

(2) connect(…)

TCP

Socket = API

TCP

Socket = API

Server

AP

(1) accept(…)

TCP client socket (for sending and receiving data).

(3) TCP 3-way handshake

Full-duplex TCP connection between 2 TCP client sockets

(4) Spawning of

new TCP client socket

Server

AP

(5) „Forking“ of

new process

TCP server socket (for accepting new connections).

© Peter R. Egli 2017
10/28

Rev. 4.70

Network Sockets peteregli.net

5. Socket interface functions (1/2)

 TCP Socket Interface Functions:

Depending on the platform (Java, C, Python ...) client and server sockets may be

implemented differently. In C (BSD sockets, Winsock) there is only 1 socket type

while in Java client and server sockets are represented by different classes.

Client: Server:

socket() Create client socket

connect() Create a connection

send() Send data

receive() Blocking receive data

close() Close client socket

serversocket() Create server socket

bind() Bind server socket to socket

address (IP+port)

listen() Create queues for requests

accept() Block on incoming requests

close() Close server socket

© Peter R. Egli 2017
11/28

Rev. 4.70

Network Sockets peteregli.net

5. Socket interface functions (2/2)

 UDP Socket Interface Functions:

Client and server have the same socket functions.

There are no functions for connection setup / shutdown since UDP is connectionless.

With one UDP socket it is possible to send to different destination hosts (sendTo() function).

Client & Server:

socket() create client / server socket

bind() bind client / server to socket address (IP+port)

send() send data (client and server)

receive() receive data (client and server)

close() close client / server socket

© Peter R. Egli 2017
12/28

Rev. 4.70

Network Sockets peteregli.net

6. Socket calls versus TCP segments (1/3)
 Connection establishment:

TCPTCPClient AP Server APClient Socket Server Socket

SYN

Server is blocked

on incoming

requests (listening).
SYN ACK

ACK

Server directly services

new socket (single thread)

or starts a new thread

(multithreaded).

socket()

bind()

listen()

accept()

unblock

return new

socket handle

socket()

connect()

socket() Function call

and function

return

receive()

Client

blocked

Rx Buffer

Server is blocked

on reading.

© Peter R. Egli 2017
13/28

Rev. 4.70

Network Sockets peteregli.net

TCPTCPClient AP Server APClient Socket Server Socket

6. Socket calls versus TCP segments (2/3)
 Socket send / receive (symmetric for client and server):

socket() Function call

and function

return

send()

Data

Segment

ACK

Tx Buffer

Rx Buffer

receive()

Server is blocked

on reading.

unblock

receive

Rx Buffer

Rx Buffer

Server handles

the request.

© Peter R. Egli 2017
14/28

Rev. 4.70

Network Sockets peteregli.net

TCPTCPClient AP Server APClient Socket Server Socket

6. Socket calls versus TCP segments (3/3)
 Socket close:

socket() Function call

and function

return

close() FIN

ACK

receive()

Server is blocked

on reading.

EOF

Server closes its socket.

close()FIN

ACK

© Peter R. Egli 2017
15/28

Rev. 4.70

Network Sockets peteregli.net

UDPUDPClient AP Server APClient Socket Server Socket

7. Socket calls versus UDP datagrams

socket()

socket()

send()
Rx Buffer

Datagram

Rx Buffer

receive()

socket() Function call

and function

return

bind()

bind()

Server is blocked

on reading.

Server handles

the request.

receive()

send()Datagram
Rx Buffer

Rx Buffer

close()

close()

unblock

read

© Peter R. Egli 2017
16/28

Rev. 4.70

Network Sockets peteregli.net

8. Socket handle
In Unix a socket is like a file descriptor.

 Same handling as file (open, close, EOF).

 Input stream / output stream to read / write to / from socket (like file).

fhdl = fopen(filename,“rw“);

while not (EOF) {

s = gets(fhdl);

}

puts(fhdl,”hello”);

fclose(fhdl);

Socket sock = new Socket(destHostIP,destHostPort);

while not (rx = EOF) {

rx = sock.read();

}

sock.write(“I’m done”);

sock.close

Socket

TCP

File: Socket:

© Peter R. Egli 2017
17/28

Rev. 4.70

Network Sockets peteregli.net

9. Parameter marshalling / RPC transparency (1/4)
Problem:

Different implementations (C/Java, processor architecture, compiler) have different

representations of data. A local data structure sent by application on host 1 may look

differently to application on host 2.

Local data

structure

IP

Socket

TCP

App

IP

Socket

TCP

App

Message carrying data structure

Data structure may

look differently

when received by

peer application.

RPC:

Remote Procedure Call

© Peter R. Egli 2017
18/28

Rev. 4.70

Network Sockets peteregli.net

9. Parameter marshalling / RPC transparency (2/4)
 E.g. Endianness:

Endianness is the ordering of bytes of a multibyte data type (integer, long integer etc.).

Network order is the way bytes (and bits) go out to the network. Network order is big endian

(MSByte first).

Memory address

0 (MSByte) 0 0 14 (LSByte)
n n+1 n+2 n+3

int value ‚14‘ in C/C++

on 32Bit big endian machine

int value ‚14‘ in C/C++

on 32bit little endian machine
0 (MSByte)0014 (LSByte)

int value ‚14‘ in Java

on 32Bit/64Bit big/little endian

machine
0 (MSByte) 0 0 14 (LSByte)

n n+1 n+2 n+3

n n+1 n+2 n+3

//the following integer is represented differently on different

//processor architectures / operating systems

int i = 14;

int value ‚14‘ in C/C++

on 64bit big endian machine

n n+1 n+2 n+3

0 (MSByte) 0 0 0

0 0 0 14 (LSByte)
n+4 n+5 n+6 n+7

int value ‚14‘ in C/C++

on 8Bit big/little endian machine
14

n n+1 n+2 n+3

LSByte Least Significant Byte

MSByte Most Significant Byte

© Peter R. Egli 2017
19/28

Rev. 4.70

Network Sockets peteregli.net

IP

Socket

TCP

App

IP

Socket

TCP

App

9. Parameter marshalling / RPC transparency (3/4)
 E.g. complex data structures with references:

Complex data structures contain references to to other data structures or objects.

Such references make only sense on the local machine but not on another host.

Local object with

reference to other

local object.

Message carrying object with

detached reference

Reference broken (points

to non-existent object).

© Peter R. Egli 2017
20/28

Rev. 4.70

Network Sockets peteregli.net

9. Parameter marshalling / RPC transparency (4/4)
 Solution:

When sending parameters over the network it is mandatory to bring them into a

standard ‚canonical‘ format. This is called parameter marshalling (or serialization).

Stubs on the client and server marshal parameters into a standard format and vice versa.

IP

Socket

TCP

App

client stub

IP

Socket

TCP

App

server stub

Client / server stubs

are linked between app

and socket and perform

parameter / message

marshalling.

 E.g. IDL/CORBA, Interface Description Language, generates client & server stubs from abstract interface

description. The stubs are then compiled by compiler together with application code.

Marshalled messages

between client and server

© Peter R. Egli 2017
21/28

Rev. 4.70

Network Sockets peteregli.net

10. Low level socket programming (1/2)
 Socket Options (SO):

Socket options allow modifying the behavior of sockets.

Generally such options should be used with caution as this makes applications dependent on

the underlying socket layer (violation of layering principle).

Java (1.6) socket option support:
socket.setSoLinger(boolean on, int linger) SO_LINGER: Define time that socket remains active to

send unsent data after close() has been called

(send data in transmit buffer).

socket.setSoTimeout(int timeout) SO_TIMEOUT: Specify a timeout on blocking socket

operations (don‘t block forever).

socket.setTcpNoDelay(boolean on) SO_NODELAY: Enable/disable Nagle‘s algorithm.

socket.setKeepAlive(boolean on) SO_KEEPALIVE: Enable/disable TCP keepalive timer

mechanism.

socket.setReceivedBufferSize(int size) SO_RCVBUF: Set the size of the receive buffer.

socket.setSendBufferSize(int size) SO_SNDBUF: Set the size of the send buffer.

socket.setReuseAddress(boolean on) SO_REUSEADDR: Enable reuse of port number

and IP address so that after a restart an application

can continue using open connections.

C/C++ socket option support:

In C/C++ many more socket options can be set through setsockopt() and getsockopt()

socket API calls.

© Peter R. Egli 2017
22/28

Rev. 4.70

Network Sockets peteregli.net

10. Low level socket programming (2/2)
 Socket raw interfaces:

A raw socket is directly attached to the network layer without a transport layer

(no TCP, UDP or SCTP layer).

This allows direct access to ICMP (e.g. for traceroute), or IP (e.g. for IPSec).

The raw interface is not available in Java due to security concerns (access to raw interface

requires root access rights since the network stack runs in the kernel space).

IP

Socket

Data Link

Physical Link

TCP / UDP / SCTP

TSAP (Port #)

NSAP (IP Address)

Socket

ICMP

App

Raw sockets

© Peter R. Egli 2017
23/28

Rev. 4.70

Network Sockets peteregli.net

11. UDP multicast sockets (1/2)
How does multicasting work?

Stream server

(e.g. audio/video)

Host2

Host3

1. Hosts join multicast groups by sending IGMP (Internet Group Management Protocol) membership

reports (on multicast address of interest, e.g. 224.0.1.1).

2. Multicast routers keep a table to know on which interface multicast packets are to be sent.

3. Multicast routers send periodic IGMP queries to the multicast hosts to check if they are still member

of the multicast group (again sent on multicast address of interest, e.g. 224.0.1.1).

4. Upon reception of a multicast packet the multicast router performs a lookup (multicast group table with

multicast group addresses MCGA) and sends the packet to all interfaces that have multicast hosts

attached. The packet is sent using the corresponding multicast link address and is thus received by all

multicast hosts.

5. The best (and only) route through the network (no loops etc.) is established with

multicast routing protocols such as MOSPF (Multicast OSPF), PIM (Protocol Independent Multicast) etc.

1.

2.

3.

4.
MOSPF or

PIM

Host1

if0

if1
5.

3.

4.

MCGA 224.0.0.1

if0 host1

if0 host2

if1 host3

© Peter R. Egli 2017
24/28

Rev. 4.70

Network Sockets peteregli.net

11. UDP multicast sockets (2/2)
 Multicast is only supported on UDP (TCP is connection-oriented and thus not suitable

for multicast).

 Multicast addresses:

Multicast addresses are class D IP addresses in the range 224.0.0.0 to 239.255.255.255.

For example:

224.0.0.9 RIP Version 2

224.0.1.1 Network Time Protocol (NTP)

224.0.0.5 All MOSPF routers

 Java multicast socket class:

Class MulticastSocket

MulticastSocket(int port) Creates a multicast socket on specified port.

joinGroup(InetAddress mcastaddr) Join a multicast group.

leaveGroup(InetAddress mcastaddr) Leaves a multicast group (no IGMP report sent,

only for hosts internal bookkeeping).

send() and receive() Inherited methods from DatagramSocket class.

© Peter R. Egli 2017
25/28

Rev. 4.70

Network Sockets peteregli.net

12. TCP server socket: C/C++ versus Java example
#include <sys/socket.h>

int main()

{

struct sockaddr_in serv, cli;

char request[REQUEST], reply[REPLY];

int listenfd, sockfd, n, clilen;

if ((listenfd = socket(PF_INET, SOCK_STREAM, 0)) < 0)

err_sys("socket error");

memset($serv, sizeof(serv), 0);

serv.sin_family = AF_INET;

serv.sin_addr.s_addr = htonl(INADDR_ANY);

serv.sin_port = htons(TCP_SERV_PORT);

if (bind(listenfd, (SA) &serv, sizeof(serv)) < 0)

err_sys("bind error");

if (listen(listenfd, SOMAXCONN) < 0)

err_sys("listen error");

for (;;) {

clilen = sizeof(cli);

if ((sockfd = accept(listenfd, (SA) &cli, &clilen)) < 0)

err_sys("accept error");

if ((n = read_stream(sockfd, request, REQUEST)) < 0)

err_sys("read error");

// n Bytes in request[] verarbeiten, reply[] erzeugen

if (write(sockfd, reply, REPLY) != REPLY)

err_sys("write error");

close(sockfd);

}

}

import java.net.*;

import java.io.*;

public static void main(String[] args)

{

ServerSocket serv;

Socket cli;

PrintStream out;

InputStream in;

try {

serv = new ServerSocket(33333);

} catch(IOException e) { ... }

while(true) {

try {

cli = serv.accept();

} catch(IOException e) { ... }

try {

out = cli.getOutputStream();

in = cli.getInputStream();

String request = in.readln();

// reply erzeugen...

out.println(reply);

cli.close();

} catch (IOException e) { ... }

}

try {

serv.close();

} catch (IOException e) { ... }

}

© Peter R. Egli 2017
26/28

Rev. 4.70

Network Sockets peteregli.net

13. TCP client socket: C/C++ versus Java example
#include <sys/socket.h>

int main(int argc, char *argv[])

{

struct sockaddr_in serv;

char request[REQUEST], reply[REPLY];

int sockfd, n;

// Prüfen der Parameter...

memset(&serv, sizeof(serv), 0);

serv.sin_family = AF_INET;

serv.sin_addr.s_addr = inet_addr(argv[1]);

serv.sin_port = htons(TCP_SERV_PORT);

if (connect(sockfd, (SA) &serv, sizeof(serv)) < 0

err_sys("connect error");

// request[] initialisieren...

if (write(sockfd, request, REQUEST) != REQUEST)

err_sys("write error");

if (shutdown(sockfd, 1) < 0)

err_sys("shutdown error");

if ((n = read_stream(sockfd, reply, REPLY)) < 0)

err_sys("read error");

// n Bytes von reply[] verarbeiten...

exit(0);

}

import java.net.*;

import java.io.*;

public static void main(String[] args)

{

Socket clnt;

PrintStream out;

InputStream in;

try {

clnt = new Socket("localhost", 33333);

} catch(IOException e) { ... }

try {

out = clnt.getOutputStream();

in = clnt.getInputStream();

out.print("Hallo Server!");

String reply = in.readln();

clnt.close();

} catch (IOException e) { ... }

}

© Peter R. Egli 2017
27/28

Rev. 4.70

Network Sockets peteregli.net

14. IPv6 sockets (1/2):
Most host platforms (Linux, Windows, Sun) already support IPv6.

 IPv6 sockets with Java:

 Java supports IPv6 since version 1.4.

 No difference to IPv4 sockets.

 IPv6 automatically enabled when detected.

 No source code change, no bytecode change required for IPv6 as long as the

application does not use numeric IP addresses.

 Java IPv6 API:

java.net.Inet4Address IPv4 address class

java.net.Inet6Address IPv6 address class

java.net.preferIPv4Stack Property to set preference for IPv4.

java.net.preferIPv6Addresses Property to set preference for IPv6.

N.B.: The properties are only accepted as VM arguments on startup of a program.

They can not be changed at runtime.

Example: -Djava.net.preferIPv4Stack=false -Djava.net.preferIPv6Stack=true

© Peter R. Egli 2017
28/28

Rev. 4.70

Network Sockets peteregli.net

14. IPv6 sockets (2/2):
Scenarios:

Dual stack: Separate stacks:

IPv4 IPv6

TCP

Data Link

IPv4 IPv6

TCP

Data Link

Socket IPv4 Socket

TCP

IPv6 Socket

The listening socket accepts connections

to 172.20.92.89 and

fe80::511a:886c:a8cc:dc66 on port 12345.

Windows is dual stack since Windows Vista.

172.20.92.89 fe80::511a:886c:a8cc:dc66 fe80::511a:886c:a8cc:dc66172.20.92.89

Listening

socket on

:: port

12345

Listening

socket on

0.0.0.0

port 12345

IP4 socket accepts connections only on

172.20.92.89.

IPv6 socket accepts connections only on

fe80::511a:886c:a8cc:dc66.

Listening

socket on

:: port

12345

