
© Peter R. Egli 2017
1/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

INTRODUCTION TO SCTP, A GENERAL PURPOSE 
TRANSPORT PROTOCOL SUITED FOR HIGH

RELIABILITY APPLICATIONS

Peter R. Egli
peteregli.net

STREAM CONTROL 
TRANSMISSION PROTOCOL

SCTP



© Peter R. Egli 2017
2/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

Contents

1. What is SCTP?

2. Why use SCTP?

3. Main features of SCTP

4. The SCTP model

5. SCTP packet format

6. Association setup with SCTP

7. Association shutdown with SCTP

8. Multihoming with SCTP

9. SCTP fragmentation

10. SCTP flow control

11. SCTP congestion control

12. SCTP error control

13. Security with SCTP

14. SCTP support in different OSs and platforms

15. SCTP API in Linux (socket interface)



© Peter R. Egli 2017
3/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

1. What is SCTP?
SCTP (Stream Control Transmission Protocol, RFC4960) is a transport protocol on OSI layer 4 

(like TCP or UDP).

SCTP was specifically designed as a transport protocol for public telephony network signalling

message transport. However, SCTP is generic and may supersede TCP in other applications as

well.

Simplified OSI stack (session and presentation layers omitted):

Network Layer (IP)

Data Link Layer

Physical Layer

SCTP Transport 

Service

SCTP User Appl. Logical communication between

SCTP layers.

Network Layer (IP)

Data Link Layer

Physical Layer

SCTP Transport 

Service

SCTP User Appl.

http://www.rfc-editor.org/rfc/rfc4960.txt


© Peter R. Egli 2017
4/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

2. Why use SCTP? (1/2)
SCTP has similar characteristics and applications as TCP (RFC793), but includes some

important improvements:

1. No head-of-line blocking:

TCP imposes a strict data ordering. However, if a user data message is lost during transit, all 

subsequent user data messages are delayed until the lost message has been retransmitted (= 

head-of-line blocking).

Some applications do not require a strict ordering of messages. E.g. applications that

exchange unrelated application messages could cope with out-of-order messages (messages

are simply processed as they arrive at the receiver). But TCP does not allow messages to pass 

each other.

2. No stream-oriented data transfer:

TCP is stream-oriented. This means that TCP treats data chunks transmitted by an application

as an ordered stream of bytes (=octets in network speak). While this concept supports a wide

range of applications (message oriented like email, character oriented like TELNET, stream

oriented like video), it is unsuited in most applications because these exchange application

level messages.

SCTP preserves application level message boundaries, thus liberating applications from

implementing a framing protocol on top of the transport protocol for delineating messages. 

SCTP simply maps application messages to chunks on the transmit path and back to

application messages on the receive path.

http://www.rfc-editor.org/rfc/rfc793.txt


© Peter R. Egli 2017
5/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

2. Why use SCTP? (2/2)
3. Multihoming:

Since a TCP connection is defined by the quadruple source IP, destination IP, source port and

destination port, TCP does not support multihoming (use of multiple IP addresses on either

side of the connection to allow multiple transmission paths through the network thus

increasing reliability).

SCTP has built-in support for multihoming which offloads high-availability applications from

implementing this feature.

4. Certain protection against denial of service attacks:

The connection setup of TCP allows denial of service attacks, particularly SYN attacks. Each

time the TCP layer receives a SYN packet for setting up a new connection, it allocates a data

structure for storing connection parameters (called Transport Control Block). Flooding with a 

high number of such SYN packets may lead to memory exhaustion.

SCTP implements a procedure to avoid or at least make it more difficult for an attacker to

launch a connection denial of service attack (4-way connection setup with state cookie).



© Peter R. Egli 2017
6/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

3. Main features of SCTP
Multiple data stream support:

Support for multiple logical streams of application messages. Ordering of messages within a 

stream. Avoidance of head-of-line blocking. 

Message oriented data transfer:

Transport of user data as messages, preservation of application level message boundaries.

Multihoming for network redundancy:

Use of multiple IP addresses per SCTP endpoint to allow transmission of data chunks through

different network paths.

Denial of service attack protection:

Some measures to protect against denial of service attacks such as connection setup flooding.

Fragmentation:

Detection of path MTU and fragmentation of data chunks to fit into the available path MTU.

Error correction:

Acknowledged error-free, non-duplicated data transfer.

Congestion avoidance:

Similar functionality as in TCP to avoid congestion to build up in the network.



© Peter R. Egli 2017
7/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

4. The SCTP model (1/4)
Concepts and terms of SCTP and their relation:

SCTP user

application (ULP)

U

M

Streams

SCTP socket

interface

U

M

U

M

SCTP layer

H

U

M

H

U

M
H

U

M

SCTP data chunks

H

U

M

H

U

M

H

U

M

SCTP H.

H

U

M

User 

message

SCTP packet

SCTP 

endpoint

IP layerTransport 

address

Bundling

L1 & L2

SCTP user

application (ULP)

U

M

U

M

U

M

H

U

M

Bundling

L1 & L2

SCTP association between endpoints (logical connection)

Multiplexing / 

demultiplexing of chunks

into an SCTP packet

H

U

M

H

U

M

H

U

M

SCTP H.

H

U

M

H

U

M H

U

M

UM: User Message

H: Header

L1,L2: Layer 1, Layer 2

ULP: Upper Layer Protocol



© Peter R. Egli 2017
8/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

4. The SCTP model (2/4)
Association:

An SCTP association is the logical relationship between 2 SCTP endpoints (≈ SCTP 

connection). 

Bundling:

Bundling packs multiple chunks (user data chunks and SCTP control chunks) into an SCTP 

packet.

Chunk:

Unit of information within an SCTP packet. Chunks contain either user data (user data chunk) 

or SCTP control information (control chunk). Each chunk has its own header (chunk header).

Endpoint:

An SCTP endpoint is an addressable logical endpoint of an SCTP association. An SCTP 

endpoint represents exactly 1 SCTP port number, but may contain multiple transport addresses

in case of multihoming (1 SCTP port number, multiple IP addresses).

Stream:

A stream is a logical channel transporting in-order application messages.

Streams are unidirectional. If an application requires a bidirectional stream, it must open 1 

outgoing and 1 incoming unidirectional stream and treat them together as a bidirectional

stream.



© Peter R. Egli 2017
9/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

4. The SCTP model (3/4)
SCTP packet:

SCTP transport PDU that contains multiple chunks and an SCTP header. The SCTP packet is

encapsulated into an IP packet.

Socket interface:

Platform specific API (OS) for opening an SCTP association and sending and receiving user

messages.

Transport address:

An SCTP transport address contains the SCTP port number and one specific IP address.

Transport control block (TCB):

Data structure containing connection information on either side of an SCTP connection, 

maintained by the SCTP layer.

User application:

Application that opens an SCTP association to a peer SCTP user application and exchanges

messages with the peer application through the SCTP socket interface.

Also called ULP (Upper Layer Protocol).

User message:

Unit of data sent by the SCTP user application over the SCTP socket interface. In protocol

speek, a user message is an 'APDU' (Aplication Protocol Data Unit).



© Peter R. Egli 2017
10/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

4. The SCTP model (4/4)
Entity relationships (UML notation):

SCTP

socket

SCTP

Endpoint

SCTP

Association

1

2

Transport

address

IP address

1

1..*

SCTP port

number

<<represents>> 1

1

An SCTP endpoint may contain

multiple transport addresses that

each contain one IP address and

share the same SCTP port number.

Thus an SCTP endpoint has exactly

one port number.

An SCTP association is represented and defined by

the corresponding transport addresses on either

side of the association. Example:

{ [10.1.1.1 : 80], [20.1.1.1, 21.1.1.2 : 8080] }

Endpoint 1

transport

address

Endpoint 2 transport

addresses (2 IP addresses

sharing the same port number)

A specific port number

or IP address may be used

by multiple endpoints.

Only the combination of

IP address and port number

(=transport address) is

unique to an endpoint.

1

11



© Peter R. Egli 2017
11/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

5. SCTP packet format (1/3)
SCTP packet header and chunk format:

The SCTP header contains only a limited set of fields.

More SCTP control information is contained in control chunks that are bundled with user data

chunks into the SCTP packet payload.
2 Field length (bytes)2

Source port number Destination port number

Verification tag

Cecksum

Chunk #1

…

Chunk #n

SCTP common header:
Source port #: Sender's port number

Dest. port #: Receiver's port number

Verif. tag: Used by receiver to validate the sender

Checksum: CRC32 checksum over entire SCTP packet

SCTP payload:
Sequence of user data and control chunks.

Each chunk consists of a chunk header and a 

chunk value (chunk format see below).

Chunk value

1 1 2

Chunk:
Chunk type: DATA or control (INIT, INITACK etc.)

Chunk flags: Chunk-specific bits

Chunk length: Size of chunk including chunk header

Chunk value: Chunk-specific data

Chunk lengthChunk type Chunk flags



© Peter R. Egli 2017
12/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

5. SCTP packet format (2/3)
SCTP DATA chunk format:

User data chunks carry application data along with some chunk and stream management data.

User Data (sequence n of stream S)

1 1 2

Data chunk:
U bit: If set to 1, indicates that this is an unordered chunk. Unordered chunks are transmitted and sent to the

receiving application as is without re-ordering based on the sequence number.

B bit: Begin of fragment bit. If set to 1 this is the first fragment of a larger fragmented user data message.

E bit: End of fragment bit. If set to 1 this is the last fragment of a larger fragmented user data message.

Stream identifier: Identifies the stream to which this chunk belongs.

Stream seq. no.: Sequence number of user data within this stream. In case of fragmentation this numer is identical for all 

fragments.

Payload proto. id.: Identifies the upper (application) layer protocol (e.g. HTTP).

User data: Application user data (e.g. HTTP header and payload).

Chunk Length (CL)Type = 0 EBU

TSN

Stream Identifier (S) Stream Sequence Number (n)

Payload Protocol Identifier



© Peter R. Egli 2017
13/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

5. SCTP packet format (3/3)
SCTP chunk types:

SCTP packet chunks are either data (DATA) or control chunks.

These chunks may be bundled in an SCTP packet in any order.

Chunk Type ID Description

DATA 0 User payload data.

INIT 1 Used for the initiation of an SCTP association.

INIT_ACK 2 Initiation Acknowledegment.

SACK 3 Selective Acknowledegment of DATA chunks.

HEARTBEAT 4 Heartbeat request for probing reachability of a peer transport address.

HEARTBEAT_ACK 5 Heartbeat Acknowledgement.

ABORT 6
Used to immediately close an association. Subsequent control chunks are ignored by

SCTP.

SHUTDOWN 7 Used for gracefully shutting down an association.

SHUTDOWN_ACK 8 Shutdown Acknowledgement.

SHUTDOWN_COMPLETE 14 Acknowledge receipt of SHUTDOWN_ACK and completion of shutdown process.

ERROR 9
Used for reporting an error condition to the SCTP peer. An ERROR chunk may be

followed by an ABORT (fatal error).

COOKIE_ECHO 10 Chunk containing the State Cookie in the association setup.

COOKIE_ACK 11 Cookie Acknowledgement.



© Peter R. Egli 2017
14/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

6. Association setup with SCTP (1/4)
SCTP uses a 4-way handshake for establishing an association (= connection).

This scheme helps reducing vulnerability to resource attacks (akin to TCP SYN floods).

INIT chunk

* Init. tag
1

SCTP 'A' SCTP 'Z'

INIT_ACK chunk

* Cookie
2

'Z' calculates a state cookie (hashing

of a temporary TCB), but does NOT 

allocate any connection resources

('Z' deletes the temporary TCB).

 Reduce vulnerability to DoS

or resource attacks.COOKIE_ECHO chunk

* Cookie

* Optionally bundled with user DATA chunks3

TCB

'Z' calculates the cookie from the

connection parameters and compares

it with the received cookie. 

In case of a match, 'Z' allocates a TCB 

for this new SCTP association.

COOKIE_ACK chunk

* Optionally bundled with user DATA chunks
4

TCB

Key:

TCB: Transport Control Block



© Peter R. Egli 2017
15/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

6. Association setup with SCTP (2/4)
State diagram for an association setup:

CLOSED

COOKIE-

WAIT

COOKIE-

ECHOED

ESTAB-

LISHED

T: Rx INIT (passive open)

A: Create temp. TCB

Create cookie

Tx INIT_ACK

Delete temp. TCB

T: Rx ABORT (from any state)

A: Delete TCB

or

T: Abort()

A: Tx ABORT

Delete TCB

T: Associate() (active open)

A: Create TCB

Tx INIT

Start init timer

T: Rx INIT_ACK

A: Tx COOKIE_ECHO

Stop init timer

Start cookie timer

T: Rx COOKIE_ACK

A: Stop cookie timer

T: Rx valid COOKIE_ECHO

A: Create TCB

Tx COOKIE_ACK

Key:

T: Trigger causing the transition

A: Action to be carried out

Rx: Receive

Tx: Transmit

ABORT: SCTP chunks are in uppercase

Abort(): SCTP API call

ULP: Upper Layer Protocol

T: Rx INIT

A: Tx INIT_ACK

T: Rx COOKIE_ECHO

A: Tx COOKIE_ACK

T: Rx INIT (peer crashed)

A: Find existing TCB

Create temp. TCB

Tx INIT_ACK

Destroy temp. TCB

or

T: Rx COOKIE_ECHO

A: Announce restart to ULP

Reset association (counters etc.)

Tx COOKIE_ACK



© Peter R. Egli 2017
16/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

6. Association setup with SCTP (3/4)
Setup collision:

Similar to TCP, an association setup collision (both SCTP 'A' and 'Z' attempt to open an

association to each other at roughly the same time) will result in a single association.

INIT chunks

* Init. tag
1

INIT_ACK chunks

* Cookie
2

COOKIE_ECHO chunks

* Cookie
3

TCBTCB

COOKIE_ACK chunks4

CLOSED

COOKIE-

ECHOED

COOKIE-

WAIT

ESTAB-

LISHED

State transitions ‘A’ & 'Z':SCTP 'A' SCTP 'Z'



© Peter R. Egli 2017
17/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

6. Association setup with SCTP (4/4)
Opening an association to a closed port:

Similar to TCP where a SYN to a closed port is answered with a RST packet, SCTP sends back

an ABORT chunk. This signals to the INIT-chunk sender that the addressed port is closed.

INIT chunk

* Init. tag1

ABORT chunk2

TCP SYN segment1

TCP RST segment2

The addressed TCP

port is closed on 'Z'.

The addressed SCTP

port is closed on ‘Z’.

TCP 'A'

SCTP 'A'

TCP 'Z'

SCTP 'Z'



© Peter R. Egli 2017
18/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

7. Association shutdown with SCTP (1/2)
Unlike TCP, SCTP does not support half-open associations (half-close). A shutdown sequence

always closes all streams irrespective of their direction.

SHUTDOWN chunk1

SHUTDOWN_ACK chunk2

SHUTDOWN_COMPLETE chunk3

SHUTDOWN chunks1

SHUTDOWN_ACK chunks2

SHUTDOWN_COMPLETE chunks3

Normal shutdown procedure where

either side initiates the shutdown

by sending a SHUTDOWN chunk.

Shutdown collision: Both sides of the

association send a SHUTDOWN chunk

at around the same time.

SCTP 'A'

SCTP 'A'

SCTP 'Z'

SCTP 'Z'



© Peter R. Egli 2017
19/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

7. Association shutdown with SCTP (2/2)
State diagram for an association shutdown:

ESTAB-

LISHED

SHUTDOWN

PENDING

T: Shutdown()

A: Check outstanding

DATA chunks

SHUTDOWN

SENT

T: No more outstanding DATA chunks

A: Tx SHUTDOWN

Start shutdown timer

CLOSED

T: Rx SHUTDOWN_ACK

A: Stop shutdown timer

Tx SHUTDOWN_COMPLETE

Delete TCB

SHUTDOWN

RECEIVED

T: Rx SHUTDOWN

A: Check outstanding

DATA chunks

SHUTDOWN

_ACK SENT

T: Rx SHUTDOWN

A: Tx SHUTDOWN_ACK

Start shutdown timer
T: No more outstanding

DATA chunks

A: Tx SHUTDOWN_ACK

Start shutdown timer

T: Rx SHUTDOWN COMPLETE

A: Stop shutdown timer

Delete TCB

or

T: Rx SHUTDOWN_ACK

A: Stop shutdown timer

Tx SHUTDOWN_COMPLETE

Delete TCB

Key:

T: Trigger causing the transition

A: Action to be carried out

Rx: Receive

Tx: Transmit

ABORT: SCTP chunks are in uppercase

Abort(): SCTP API call



© Peter R. Egli 2017
20/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

IP 1

IP 2

8. Multihoming with SCTP
Multihoming in SCTP allows using multiple transport addresses in an association. Typically, 

different transport addresses (IP addresses) are bound to different networks thus providing

resiliency in case of a network failure.

One of the transmission paths is the primary path. If connectivity over the primary path fails

(timeouts of sent packets), SCTP falls back to a secondary (alternate) path for transmitting.

N.B.: SCTP does not perform load balancing or load sharing.

The ULP can request SCTP to send data to a specific destination transport address.

Multihoming scenario with a mobile device and a primary and secondary path:

Mobile 

device

Server

IP A

IP B
Network 2

Network 1

Primary path

Secondary path



© Peter R. Egli 2017
21/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

9. SCTP fragmentation
SCTP includes an (optional) fragmentation on the transmit side to avoid fragmentation in the

IP layer. An SCTP receiver must support fragmentation (be able to reassemble a fragmented

packet).

An SCTP sender must fragment DATA chunks if they do not fit into an SCTP packet including

chunk headers (exceed the association path MTU = smallest MTU of all paths to all peers in a 

multihomed scenario).

SCTP user

application

300

IP Layer

2500

300 H SCTP H.1000 H

1500 H SCTP H.

300 H SCTP H.1000 H

Fragmentation of

2500 byte

user message and

bundling of DATA chunks

in the SCTP layer

SCTP user

application

300

IP Layer

2500

300 H SCTP H.1000 H

1500 H SCTP H.

IP H.1500 H SCTP H. IP H.

User messages



© Peter R. Egli 2017
22/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

SCTP User

Application

‘Z’ (ULP ‘Z’)

10. SCTP flow control (1/7)
Akin to TCP, SCTPs flow control mechanism is based on a receiver window size (rwnd).

The SCTP flow control algorithm guarantees that the receive buffer never experiences overflow

(sent data always fits into the receive buffer).

The following scenarios exemplify and explain the various algorithms and mechanisms used

in the SCTP flow control.

The examples use the following conceptual model:

SCTP Layer 

‘A’

SCTP User

Application

‘A’ (ULP ‘A’)

SCTP socket

interface

Network

Transmit

buffer (queue)

Receive

buffer (queue)

SCTP Layer

‘Z’
Receive

buffer (queue)

Transmit

buffer (queue)

Application

reads

Application

writes

rwnd
‘Z’ rwnd cwnd
T3-rtx TSN

‘A’ rwnd cwnd
T3-rtx TSN

Application

writes

Application

reads

SCTP socket

interface



© Peter R. Egli 2017
23/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (2/7)
Receive window (rwnd):

The recieve window size rwnd indicates the receive buffer size. The advertised receive window

size a_rwnd is the value of rwnd sent by a receiver SCTP layer to its peer STCP layer to inform

it about its receive buffer size.
A sender must not send more DATA chunks than fit into rwnd. If a_rwnd reaches zero, the

sender must stop sending DATA chunks.
Exception: 1 DATA chunk may be in flight (underway) if allowed by cwnd for window probing

(see below).

The default initial value for rwnd is 1500 bytes.
An SCTP receiver increases a_rwnd by the amount of data delivered to the ULP and advertises

new values to the SCTP transmitter.

TSN – DATA chunk counter:

Every DATA chunk has a Transmission Sequence Number (TSN). As opposed to TCP, SCTP 

counts full DATA chunks and not bytes (SCTP is message oriented, not stream oriented). TSNs 

are used by the receiver to acknowledge successful receipt of DATA chunks (in SACK chunks).

Congestion control window (cwnd):

The size of the congestion control window is determined by the congestion control algorithm

(see below). At any given time, the amount of outstanding data (DATA chunks in flight but not 
yet acknowledged) must not exceed the congestion window size (cwnd).

If cwnd=0, the sender must stop sending SCTP packets.



© Peter R. Egli 2017
24/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (3/7)
Zero window probe / window probing:
When a receiver has advertised a zero receive window (a_rwnd=0) and a subsequent SACK 

advertising a non-zero receive window is lost, the sender will be blocked forever from sending

since only a new DATA chunk would trigger a new SACK packet with the non-zero rwnd

advertisement.

To overcome this potential deadlock situation, a sender may send a zero window probe after 
RTO time elapsed if it received a_rwnd=0. After that, the sender should exponentially increase

the zero window probe intervals. Again, if cwnd=0, the sender must not send anything (not 

even zero window probes).

A zero window probe may only be sent when all DATA chunks have been acknowledged and

no DATA chunks are inflight.

Bundling policy:

Bundling is the process of packing different chunks (DATA chunks, control chunks such as

SACK) into an SCTP packet. An SCTP sender must heed the following policies:

a. The SCTP packet size must not exceed the association path MTU, i.e. the smallest MTU of all 

paths of an SCTP association (in multihomed scenarios there are multiple paths between the

SCTP peers).

b. Bundle SACK chunks with highest priority.
c. After bundling SACK chunks, if both rwnd and cwnd permit, bundle DATA chunks eligible for

retransmission into the remaining space of an SCTP packet.
d. Bundle the remaining space with new DATA chunks (again if rwnd and cwnd permit).



© Peter R. Egli 2017
25/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (4/7)
Reassembly in the receiver:

An SCTP receiver first reassembles DATA chunks into the original ULP messages, then delivers

these messages to the ULP.

Silly window syndrome prevention:

The Silly Window Syndrome (SWS) can occur if both of the following are true:
a. Receive buffer almost full, receiver advertises small rwnd values.

b. Sender sends tinygrams, i.e. very small packets as allowed by rwnd.

This results in very poor transmission performance. To avoid SWS, an SCTP sender has to

apply the mechanisms set forth in RFC1122 (basically the receiver has to restrain from
advertising small rwnd values and the sender has to avoid sending tinygrams).

Transmit buffer size:

The transmit buffer in the SCTP sender may accept more data than is advertised by the SCTP 
reciever with a_rwnd. An SCTP sender reports transmit buffer overflow back to the ULP by

some appropriate means (socket callback etc.). The handling of such situations is up to the

ULP (outside of scope of SCTP).

Delayed ack:

The delayed ack guidelines set forth in RFC2581 should be followed by an SCTP sender

(send acknowledge for every other SCTP DATA packet, no later than 200ms after reception of a 

DATA packet).

http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc2581.txt


© Peter R. Egli 2017
26/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (5/7)
Flow control scenarios:

INIT [Initial-TSN=X, 

a_rwnd=5000]

1

ULP ‘A’

socket()

SCTP Layer ‘Z’ ULP ‘Z’

socket()

INIT_ACK [Initial-TSN=Y,

a_rwnd=2500]

COOKIE_ECHO

COOKIE_ACK

Association

Setup

write(D=500)

rwnd 2500

T3-rtx 0

cwnd 4380

TSN X+0

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

rwnd 2000

T3-rtx 0

cwnd 4380

TSN X+0

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

X+0

DATA [TSN=X+0, CL=500]

2

write(D=1000) rwnd 1000

T3-rtx 0

cwnd 4380

TSN X+1

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

DATA [TSN=X+1, CL=1000]

3

X+0

X+0X+1 X+0X+1

SCTP Layer ‘A’



© Peter R. Egli 2017
27/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (6/7)
Flow control scenarios:

ULP ‘A’ SCTP Layer ‘Z’ ULP ‘Z’

rwnd 1000

T3-rtx 0

cwnd 4380

TSN X+1

SACK [Cumulative TSN=X+1,

a_rwnd=1000]

4

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

X+0X+1

read(D=500)
rwnd 1500

T3-rtx 0

cwnd 4380

TSN X+1

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

X+1

Y+0

write(D=1000)

5

DATA [TSN=Y, CL=1000]

SACK [Cumulative

TSN=X+1, a_rwnd=1500]

Y+0

DATA [TSN=X+2, CL=1000]

SACK [Cumulative TSN=Y,

a_rwnd=4000]

6
rwnd 500

T3-rtx 0

cwnd 4380

TSN X+4

rwnd 5000

T3-rtx 0

cwnd 4380

TSN Y+0

X+1write(D=1000)
X+2X+3

write(D=1000)

X+2

Y+0write(D=800)

X+4

SCTP Layer ‘A’



© Peter R. Egli 2017
28/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

10. SCTP flow control (7/7)
1. SCTP association setup:
Both SCTP peers communicate their respective receive buffer size as a_rwnd (advertised receive window) in the assocation

setup. Both SCTP peers initialize their rwnd variable with the a_rwnd advertised by the peer.

2. & 3. Application writes:

ULP ‘A’ writes an application message to the SCTP layer through the socket API.
SCTP ‘A’ stores the message in the transmit buffer along with the TSN of this chunk (X) and decrements rwnd by the size of

the data (500 bytes).

SCTP ‘Z’ receives the DATA chunk and stores it in its receive buffer.

Since SCTP mandates the implementation of delayed acks as per RFC1122, SCTP ‘Z’ does not immediately send back a SACK 

chunk. Instead it waits up to 200ms in order to receive another DATA chunk so as to acknowledge both chunks with one

SACK.

In the meantime, ULP ‘A’ writes another message over the API into the SCTP layer which delivers it as another DATA chunk

with TSN=X+1.

4. SACK chunk:

SCTP ‘Z’ received 2 DATA chunks before the delayed ack timer expired (200ms), so it returns a SACK chunk with cumulative

TSN = X+1 singaling that it successfully received all DATA chunks up until and including TSN=X+1.
The a_rwnd value is still 1000 because both DATA chunks X and X+1 still occupy space in the receive buffer because they

have not yet been delivered to the ULP ‘Z’.

5. ULP ‘Z’ reads and writes data:

ULP ‘Z’ reads 500 bytes from the SCTP layer and thus frees up 500 bytes in the receive buffer. Right afterwards, ULP ‘Z’ writes
a 1000 byte message to the SCTP layer which bundles it as a DATA chunk with a SACK chunk advertising a new a_rwnd value

(1500 bytes free in receive buffer) and sends it to the SCTP ‘A’ layer.

6. ULP ‘A’ writes multiple messages:
ULP ‘A’ writes two 1000 byte and one 800 byte messages to its SCTP layer. Since a_rwnd advertised by SCTP ‘Z’ is 1500, SCTP 

‘A’ only sends the first 1000 byte message as a DATA chunk. In order to implement the delayed ack algorithm (RFC1122), SCTP 
‘A’ bundles a SACK chunk advertising a_rwnd=4000.

http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt


© Peter R. Egli 2017
29/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (1/6)
Congestion control tries avoiding overload situations in network components like routers.

Congestion in network components can lead to packet loss which is handled by the error

control function of SCTP (see below). The goal of congestion control is to avoid packet loss in 

the first place.

SCTP congestion control key facts:

• SCTP congestion control is based on RFC2581 with some minor modifications.

• Congestion control is applied to the entire association, not individual streams.

• SCTP maintains a separate 𝒄𝒘𝒏𝒅 parameter for each peer destination address in 

multihomed scenarios.

• As defined in RFC2581, the transmission rate starts slowly at the beginning (slow start

phase), based on feedback provided by received SACK chunks. After the slow start phase, 

SCTP enters the congestion avoidance phase. In case of congestion in the network, SCTP 

immediately reverts back to the slow start phase.

Slow Start

𝒄𝒘𝒏𝒅 > 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉

Congestion

Avoidance

T3-rtx timeout or fast retransmit

http://www.rfc-editor.org/rfc/rfc2581.txt
http://www.rfc-editor.org/rfc/rfc2581.txt


© Peter R. Egli 2017
30/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (2/6)
SCTP congestion control window 𝐜𝒘𝒏𝒅:

𝐜𝒘𝒏𝒅 and 𝒓𝒘𝒏𝒅 (or 𝒂_𝒓𝒘𝒏𝒅 = advertised receiver window size) define 2 windows where the

smaller of the 2 determines the maximum amount of data that can be sent.

After the slow start phase, 𝐜𝒘𝒏𝒅 is large so that 𝒓𝒘𝒏𝒅 becomes the dominant window size.

𝒄𝒘𝒏𝒅
(max. amount of outstanding data, 

i.e. sent but not cumulative

TSN acknowleded)

Bytes waiting to be sent

in send buffer

Bytes sent

and acknowledged

(cum. TSN ack.)

Can be

sent

anytime

TSN

𝒓𝒘𝒏𝒅

(receive window size)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝒇𝒍𝒊𝒈𝒉𝒕𝒔𝒊𝒛𝒆

(data «in flight»,

i.e. sent but not

acknowledged)

Congestion control window

(𝒄𝒘𝒏𝒅)

Receive window

(𝒓𝒘𝒏𝒅)

Congestion control window

in congestion avoidance phase



© Peter R. Egli 2017
31/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (3/6)
Slow start and congestion avoidance phases:

𝒄𝒘𝒏𝒅𝒊𝒏𝒊𝒕 = 𝒎𝒊𝒏 𝟒 ∗ 𝑷𝑴𝑻𝑼,𝒎𝒂𝒙 𝟐 ∗ 𝑷𝑴𝑻𝑼, 𝟒𝟑𝟖𝟎𝒃𝒚𝒕𝒆𝒔

𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉𝒊𝒏𝒊𝒕 = ∞ (𝒐𝒓 𝒂_𝒓𝒘𝒏𝒅)

∆𝒄𝒘𝒏𝒅𝒔𝒔= 𝒎𝒊𝒏 𝑫𝑨𝑻𝑨𝒂𝒄𝒌𝒆𝒅, 𝑷𝑴𝑻𝑼

∆𝒄𝒘𝒏𝒅𝒄𝒂= 𝟏 ∗ 𝑷𝑴𝑻𝑼 𝒑𝒆𝒓 𝑹𝑻𝑻

𝑐𝑤𝑛𝑑𝑖𝑛𝑖𝑡
∆𝑐𝑤𝑛𝑑𝑠𝑠

∆𝑐𝑤𝑛𝑑𝑠𝑠

𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛𝑖𝑡

∆𝑐𝑤𝑛𝑑𝑠𝑠

Slow start phase

∆𝑐𝑤𝑛𝑑𝑐𝑎

∆𝑐𝑤𝑛𝑑𝑐𝑎

𝑐𝑤𝑛𝑑𝑇3−𝑟𝑡𝑥
∆𝑐𝑤𝑛𝑑𝑠𝑠

∆𝑐𝑤𝑛𝑑𝑠𝑠

∆𝑐𝑤𝑛𝑑𝑐𝑎

Congestion

avoidance phase

Slow start phase

𝒄𝒘𝒏𝒅𝑻𝟑−𝒓𝒕𝒙 = 𝟏 ∗ 𝑷𝑴𝑻𝑼

𝒄𝒘𝒏𝒅𝑭𝑹 = 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉𝑭𝑹

𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉𝑻𝟑 = 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉𝑭𝑹 = 𝒎𝒂𝒙 ൗ𝒄𝒘𝒏𝒅
𝟐 , 𝟒 ∗ 𝑷𝑴𝑻𝑼

𝒃𝒖𝒓𝒔𝒕𝒎𝒂𝒙 = 4

𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝐹𝑅

𝑐𝑤𝑛𝑑𝐹𝑅

𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑇3

∆𝑐𝑤𝑛𝑑𝑐𝑎

∆𝑐𝑤𝑛𝑑𝑐𝑎

Packet loss

(T3-rtx timeout) Packet loss

(Fast Retransmit)

Congestion

avoidance phase

∆𝑐𝑤𝑛𝑑𝑠𝑠

1 2

3

SS 

phase

CA 

phase

4 5

6

Key:

PMTU: Association Path MTU

SS: Slow Start

CA: Congestion Avoidance

ssthresh

cwnd



© Peter R. Egli 2017
32/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (4/6)
General mechanism of congestion control:

The general mechanism applied in SCTP congestion control (as per RFC2581) is to slowly increase the congestion window

size 𝒄𝒘𝒏𝒅, but to rapidly collapse the window when there are signs of congestion.

Packet loss is deemed a sign of congestion. Note, however, that this is not always true (e.g. on wireless links there may be

packet loss due to radio signal interferences).

Congestion control is applied to the entire association, not individual streams. Nevertheless, 𝒄𝒘𝒏𝒅 is maintained per 

destination transport address (multihomed scenarios).

Maximum burst limitation:

At any instance of time, the maximum burst limit is 4 (a maximum of 4 packets may be sent at any opportunity to send).

This may be accomplished by regulating 𝒄𝒘𝒏𝒅 as follows:

𝒊𝒇 𝒇𝒍𝒊𝒈𝒉𝒕𝒔𝒊𝒛𝒆 + 𝒃𝒖𝒓𝒔𝒕𝒎𝒂𝒙 ∗ 𝑷𝑴𝑻𝑼 < 𝒄𝒘𝒏𝒅 𝒕𝒉𝒆𝒏 𝒄𝒘𝒏𝒅 = 𝒇𝒍𝒊𝒈𝒉𝒕𝒔𝒊𝒛𝒆 + 𝒃𝒖𝒓𝒔𝒕𝒎𝒂𝒙 ∗ 𝑷𝑴𝑻𝑼

Congestion control parameters:

The following parameters are involved in congestion control:

Parameter Description

𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉

Slow start threshold (threshold between slow start and congestion avoidance phase).

If 𝒄𝒘𝒏𝒅 ≤ 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉, SCTP is in the slow start phase. If 𝒄𝒘𝒏𝒅 > 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉, SCTP is in the

congestion avoidance phase.

𝒄𝒘𝒏𝒅
Congestion window size. Maximum permissible number of outstanding bytes (sent data which

are not yet acknowledged).

𝒇𝒍𝒊𝒈𝒉𝒕𝒔𝒊𝒛𝒆 Actually sent data which are not yet acknowledged.

𝒑𝒃𝒂
Partially bytes acknowledged.

Total number of bytes acknowledged including SACK gap ack blocks.

http://www.rfc-editor.org/rfc/rfc2581.txt


© Peter R. Egli 2017
33/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (5/6)
1. Slow Start Phase:

Before any data transfer takes place, 𝒄𝒘𝒏𝒅 is initialized to 𝑐𝑤𝑛𝑑𝑖𝑛𝑖𝑡.
𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉 is initialized to some arbitrarily large value, e.g. the receiver window size (𝒂_𝒓𝒘𝒏𝒅).

The slow start phase is defined by 𝒄𝒘𝒏𝒅 ≤ 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉.

𝒄𝒘𝒏𝒅 is incremented by ∆𝑐𝑤𝑛𝑑𝑠𝑠 when:

a. Current 𝒄𝒘𝒏𝒅 is fully utilized

b. Incoming SACK advances the cumulative TSN ack point

c. Sender is not in fast recovery

The slow start phase is a self clocking mechanism in that only successfully received SACK 

chunks increase 𝒄𝒘𝒏𝒅. In case of congestion (packet loss), SACKs will not be received thus

𝒄𝒘𝒏𝒅 is not increased.

2. Congestion Avoidance Phase:

The congestion avoidance phase is defined by 𝒄𝒘𝒏𝒅 > 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉.

In this phase, 𝒄𝒘𝒏𝒅 is incremented linearly by 𝑷𝑴𝑻𝑼 as follows:

𝒑𝒃𝒂 = 𝟎 (initial 𝒑𝒃𝒂).

Increment 𝒑𝒃𝒂 by the total amount of data bytes acknowledged in SACK chunks.

If 𝒑𝒃𝒂 ≥ 𝐜𝐰𝒏𝒅:

𝐜𝐰𝒏𝒅 = 𝐜𝐰𝒏𝒅 + 𝑷𝑴𝑻𝑼
𝒑𝒃𝒂 = 𝒑𝒃𝒂 − 𝐜𝐰𝒏𝒅
When all sent data sent has been acknowledged by receiver: 𝒑𝒃𝒂 = 𝟎.



© Peter R. Egli 2017
34/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

11. SCTP congestion control (6/6)
3. & 4. Packet loss (retransmission timeout) with ensuing slow start phase:
If the retransmission timer T3-rtx times out due to packet loss, 

𝒄𝒘𝒏𝒅 is immediately reduced to 𝑐𝑤𝑛𝑑𝑇3−𝑟𝑡𝑥. This limits the number of sent packets in bursts 

which in turn alleviates congestion in the network.

This way, SCTP reverts back to the slow start phase.

𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉 is reduced to half the last known good 𝒄𝒘𝒏𝒅 or 𝟒 ∗ 𝐏𝐌𝐓𝐔, whichever is larger. This 

makes SCTP enter the subsequent congestion avoidance phase earlier, i.e. SCTP stops 

incrementing 𝒄𝒘𝒏𝒅 exponentially earlier, thus again alleviating the congestion.

5. Congestion Avoidance Phase:

Again, once 𝒄𝒘𝒏𝒅 > 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉, SCTP enters the congestion avoidance phase.

6. Packet loss with fast retransmit:

Fast retransmit indicates slight congestion in the network. 

Again, 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉 is reduced to half the last known good 𝒄𝒘𝒏𝒅 or 𝟒 ∗ 𝐏𝐌𝐓𝐔, whichever is larger.

In such situations, the congestion control algorithm reacts more gently in that 𝒄𝒘𝒏𝒅 is cut in 

half and not down to 𝐏𝐌𝐓𝐔. 

Subsequently, SCTP enters the slow start phase for a short period of time (slow start phase if

𝒄𝒘𝒏𝒅 ≤ 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉).

As soon as 𝒄𝒘𝒏𝒅 > 𝒔𝒔𝒕𝒉𝒓𝒆𝒔𝒉, SCTP enters the congestion avoidance phase again.



© Peter R. Egli 2017
35/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (1/8)
Retransmissions of lost packets:

Packets may be lost due to buffer overflows in transit or due to bit errors in the packet itself.

SCTP handles lost packets through retransmission (akin to TCP).

A retransmission timer is started for each chunk (see procedure below).

SCTP maintains a separate retransmission timer RTO for each peer transport address.

The calculation of RTO closely follows the definitions of the TCP retransmission timer value.

If the aggregate bandwidth temporarily exceeds

the available bandwidth of an output link, the

router drops excess packets.

Packets dropped

by router 3.

Router 1

Router 2

Router 3

SCTP silently discards packets with

an incorrect checksum (CRC32).

SCTP



© Peter R. Egli 2017
36/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (2/8)
Retransmission procedure:

Restart retransmission
timer (T3-rtx) with 

current RTO

Yes

Retransmission

timer for peer

transport address

running?
No

Receive SACK chunk

Last outstanding

DATA chunk

acknowledged?

Stop retransmission
timer (T3-rtx)

Yes

New DATA 

chunk to be 

sent

No

RTORTO*2

(back off the timer)

Retransm. 

timer expiry

Retransmit as many

outstanding DATA 

chunks in a single SCTP 

packet as permitted by 

MTU

Restart retransmission
timer (T3-rtx) with 

current RTO

Receive SACK chunk

Recalculate RTO



© Peter R. Egli 2017
37/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (3/8)
Retransmission timer value:

SCTP maintains a retransmission timer RTO for each peer transport address.

Since the actual round trip time is subject to constant changes, it needs to be constantly

adjusted.

𝑺𝑹𝑻𝑻𝒏𝒆𝒘 = 𝟏 − 𝑹𝑻𝑶𝜶 ∗ 𝑺𝑹𝑻𝑻𝒐𝒍𝒅 + 𝑹𝑻𝑶𝜶 ∗ 𝑹
′

𝑹𝑻𝑻𝑽𝑨𝑹𝒏𝒆𝒘 = 𝟏 − 𝑹𝑻𝑶𝜷 ∗ 𝑹𝑻𝑻𝑽𝑨𝑹𝒐𝒍𝒅 + 𝑹𝑻𝑶𝜷 ∗ 𝑺𝑹𝑻𝑻𝒐𝒍𝒅 − 𝑹′

𝑹𝑻𝑶𝒏𝒆𝒘 = 𝑺𝑹𝑻𝑻𝒏𝒆𝒘 + 𝟒 ∗ 𝑹𝑻𝑻𝑽𝑨𝑹𝒏𝒆𝒘

where
𝑹𝑻𝑻𝑽𝑨𝑹 = 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑹𝒐𝒖𝒏𝒅 𝑻𝒓𝒊𝒎 𝑻𝒊𝒎𝒆 𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏
𝑺𝑹𝑻𝑻 = 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝒎𝒐𝒐𝒕𝒉𝒆𝒅 𝑹𝒐𝒖𝒏𝒅 𝑻𝒓𝒊𝒑 𝑻𝒊𝒎𝒆
𝑹𝑻𝑶 = 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑹𝒆𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒔𝒔𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝑶𝒖𝒕 𝒕𝒊𝒎𝒆𝒓 𝒗𝒂𝒍𝒖𝒆
𝑹𝑻𝑶𝜶 = 𝒘𝒆𝒊𝒈𝒉𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝒅𝒆𝒇𝒂𝒖𝒍𝒕 𝒗𝒂𝒍𝒖𝒆 = 𝟏/𝟖)
𝑹𝑻𝑶𝜷 = 𝒘𝒆𝒊𝒈𝒉𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝒅𝒆𝒇𝒂𝒖𝒍𝒕 𝒗𝒂𝒍𝒖𝒆 = 𝟏/𝟒)

𝑹′ = 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝒓𝒐𝒖𝒏𝒅 𝒕𝒓𝒊𝒑 𝒕𝒊𝒎𝒆

RTO1 is too small. Many packets experience

round trip times larger than RTO1 which would result

in inadvertent retransmissions.

RTO2 is a good choice since it is slightly larger

than the largest round trip time but still as small 

as possible.

RTO is recalculated factoring in the

currently smoothed («averaged»)

round trip time and its variation.

The weighing factors (𝑹𝑻𝑶𝜶 and 𝑹𝑻𝑶𝜷)

determine the speed of adjustment

of 𝑹𝑻𝑶 to new measurement

values for the round trip time (𝑹′).

10 20 30 40 50 60

Probability

Round trip time

[milliseconds]

0.1

0.2

0.3

0.4

RTO1 RTO2
Mean value

(SRTT)

RTTVAR



© Peter R. Egli 2017
38/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (4/8)
Fast Retransmit:

SCTP employs a similar mechanism for fast retransmits as TCP as shown below.

DATA [TSN=10]1
Received DATA chunks (TSN)

DATA [TSN=11,12]2

SACK [Cum. TSN Ack=12]3

DATA [TSN=13]4

DATA [TSN=14,15]5

SACK [Cum. TSN Ack=12,
Gap Ack Block # 1 Start / End = 2 / 3]

6

DATA [TSN=16]7

DATA [TSN=17]8

Miss indication for each TSN

10 - - - - - - - -

10 11 12 - - - - - -

10 11 12 - 14 15 - - -

10 11 12 - 14 15 - 17 -

0 - - - - - - - -

10 - - - - - - - -

Lost!

Lost!

0 0 0 - - - - - -

10 11 12 - - - - - -

0 0 0 - - - - - -

10 11 12 - - - - - -

0 0 0 0 - - - - -

10 11 12 13 - - - - -

0 0 0 0 0 0 - - -

10 11 12 13 14 15 - - -

0 0 0 1 0 0 - - -

10 11 12 13 14 15 - - -

0 0 0 1 0 0 - - -

10 11 12 13 14 15 - - -

0 0 0 1 0 0 0 - -

10 11 12 13 14 15 16 - -

0 0 0 1 0 0 0 0 -

10 11 12 13 14 15 16 17 -

SCTP 'A' SCTP 'Z'



© Peter R. Egli 2017
39/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (5/8)
Fast Retransmit:

SCTP employs a similar mechanism for fast retransmits as TCP as shown below.

SACK [Cum. TSN Ack=12
Gap Ack Block # 1 Start / End=2 / 3

Gap Ack Block # 2 Start / End=5 / 5]
9

DATA [TSN=18]10

SACK [Cum. TSN Ack=12
Gap Ack Block # 1 Start / End = 2 / 3

Gap Ack Block # 2 Start / End = 5 / 6]
11

Received DATA chunks (TSN)

Retransmission, DATA [TSN=13]12

SACK [Cum. TSN Ack=15
Gap Ack Block # 1 Start / End = 2 / 3]

13

Retransmission, DATA [TSN=16]14

SACK [Cum. TSN Ack=18]15

10 11 12 - 14 15 - 17 18

10 11 12 13 14 15 - 17 18

10 11 12 13 14 15 16 17 18

0 0 0 2 0 0 1 0 -

10 11 12 13 14 15 16 17 -

0 0 0 2 0 0 1 0 0

10 11 12 13 14 15 16 17 18

0 0 0 3 0 0 2 0 0

10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 2 0 0

10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 3 0 0

10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0

10 11 12 13 14 15 16 17 18

0 0 0 0 0 0 0 0 0

10 11 12 13 14 15 16 17 18

SCTP 'A' SCTP 'Z'



© Peter R. Egli 2017
40/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (6/8)
Fast Retransmit:
Step by step explanation of a Fast Retransmit procedure.

1. & 2. DATA chunks:

SCTP ‘A’ sends DATA chunks with TSNs 10, 11 and 12 in 2 separate SCTP packets. Both packets are correctly received by

SCTP ‘Z’.

3. SACK chunk:

Following the guidelines set forth in RFC2581 (Delayed Ack: Acknowledge for every other SCTP DATA packet, no later than

200ms after reception of a DATA packet), SCTP ‘Z’ sends back a SACK chunk acknowledging the correct

reception of DATA chunks 10, 11, and 12 (Cumulative TSN Ack equals 12 thus acknowledging correct reception of all TSNs up

until and including DATA chunk 12).

4. Lost SCTP packet:

The SCTP packet with TSN=13 is lost. Such packet losses are typical of routers experiencing slight congestion on their output

buffers where they drop a few excess packets.

5. Successful delivery of next DATA chunk:

SCTP DATA chunks with TSNs 14 and 15 are again successfully received by SCTP ‘Z’.

6. SCTP ‘Z’ signals missing TSNs:

SCTP ‘Z’ sends back a SACK with cumulative TSN Ack = 12 (all TSNs including 12 correctly received) and a gap ack block

with start=2 and end=3 indicating that TSN=14 (12+2) and TSN=15 (12+3) have been correctly received. This in turn signals to

SCTP ‘A’ that TSN=13 has been lost (gap). SCTP ‘A’ increments the miss indication counter for TSN=13.

7. Lost SCTP packet again:

The SCTP packet with TSN=16 is lost.

8. Successful reception of next DATA chunk:

The DATA chunk with TSN=17 is correctly received again by SCTP ‘Z’.

http://www.rfc-editor.org/rfc/rfc2581.txt


© Peter R. Egli 2017
41/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (7/8)
Fast Retransmit:
Step by step explanation of a Fast Retransmit procedure.

9. SCTP ‘Z’ signals missing TSNs:

SCTP ‘Z’ sends back another SACK, now with 2 gap ack blocks.

The first gap ack block acknowledges the reception of TSN=14 and TSN=15, the second gap ack block acknowledges the

reception of TSN=17 (12+5). SCTP ‘A’ increments the miss indication counters for TSN=13 and TSN=16.

10. Successful reception of next DATA chunk:

The DATA chunk with TSN=18 is correctly received again by SCTP ‘Z’.

11. SACK including acknowledgement for TSN=18:

SCTP ‘Z’ sends back another SACK with 2 gap ack blocks, the first with the same start and end numbers as in step 9, the

second with start=5 (12+5) and end=6 (12+6). SCTP ‘A’ again increments the miss indication counters for TSN=13 and TSN=16.

12. Retransmission of TSN=13:

The miss indication counter for TSN=13 reaches 3, thus TSN=13 is eligible for retransmission. SCTP ‘A’ retransmits the DATA 

chunk with TSN=13 which is correctly received by SCTP ‘Z’.

13. & 14. SACK with Cumulative Ack TSN=15 and retransmission of TSN=16:

SCTP ‘Z’ signals the correct reception of all DATA chunks up until and including TSN=15. The gap ack block with start=2 (15+2) 

and end=3 (15+3) indicates that TSN=17 and TSN=18 were successfully received and thus that TSN=16 is still missing. SCTP 

‘A’ increments the miss indication counter for TSN=16 which reaches 3 thus triggering the retransmission of TSN=16.

15. Last SACK of fast retransmission procedure:

Finally, SCTP ‘Z’ sends back a SACK signalling the correct reception of all DATA chunks up until and including TSN=18.

SCTP ‘Z’ reverts to delayed acknowledge mode (RFC2581) and SCTP ‘A’ exits the fast retransmit mode.

http://www.rfc-editor.org/rfc/rfc2581.txt


© Peter R. Egli 2017
42/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

12. SCTP error control (8/8)
SCTP uses a CRC32 checksum as per RFC3309 to provide data integrity of SCTP packets. 

Fill in proper verification 

tag in common header

Initialize checksum field 

with ‘0’ bits

Send SCTP packet

New SCTP 

chunk(s) to

be sent

Calculate CRC32 of the 

whole SCTP packet (incl. 

common header)

SCTP sender CRC32 handling: SCTP receiver CRC32 handling:

Store CRC32 in SCTP 

common header in 

temporary variable

New SCTP 

chunk(s) 

received

Replace CRC32 field in 

common header with all 

‘0’ bits

Calculate CRC32 of the 

whole SCTP packet (incl. 

common header)

Yes

Silently discard

SCTP packet

Process

SCTP packet

No

CRCs

match?

http://www.rfc-editor.org/rfc/rfc3309.txt


© Peter R. Egli 2017
43/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

13. Security with SCTP
Security (encryption, authentication etc.) was not initially designed into SCTP.

Recent activities in integrating security into the SCTP protocol itself are funneled into an IETF 

draft and may eventually become a standard.

DTLS over SCTP is an alternative based on the adoption of DTLS.

Security Protocol Standard Description

SCTP over IPSec RFC3554
• Does not support all SCTP features (no multihoming).

• 1 IPSec Security Association per IP address needed (scalability issue).

TLS over SCTP RFC3436

• Does not support all SCTP features (e.g. no unordered delivery).

• Control chunks and SCTP header not secured, only DATA chunks.

• 1 TLS connection per SCTP stream (scalability issue).

• Each DATA chunk (ULP message) individually secured (performance issue).

Secure SCTP (S-SCTP) IETF Draft

• No TLS or IPSec needed.

• Security built into the SCTP protocol.

• Fully compatible with RFC4960.

SCTP-AUTH Chunks RFC4895

• Authentication of chunks with HMAC (SHA-1 and SHA-256).

• Authentication based on shared keys.

• Can be used to authenticate DATA and control chunks.

DTLS over SCTP RFC6083

• Datagram Transport Layer Security for SCTP

• Provides almost all transport features of SCTP

• Limitations:

• Limitation of maximum user message size of 2^14 bytes

• SCTP-AUTH not possible since authentication done by DTLS

http://www.rfc-editor.org/rfc/rfc3554.txt
http://www.rfc-editor.org/rfc/rfc3436.txt
https://tools.ietf.org/html/draft-hohendorf-secure-sctp-24
http://www.rfc-editor.org/rfc/rfc4960.txt
http://www.rfc-editor.org/rfc/rfc4895.txt
http://www.rfc-editor.org/rfc/rfc6083.txt


© Peter R. Egli 2017
44/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

14. SCTP support in different OSs and platforms
There is varying support for SCTP by the different OSs and platforms.

Where native (kernel) support is not available, user space SCTP libraries such as sctplib

(Linux, FreeBSD, Mac OS X, Solaris, Windows) or SctpDrvcan (Windows) can be used instead.

OS / Platform
SCTP 

Support
Description

Linux Yes

SCTP supported since kernel 2.4.

lksctp-tools is a user space library that provides a specific SCTP socket 

interface. Without lksctp-tools, only the standard (SCTP agnostic) socket 

interface is available.

FreeBSD / OpenBSD Yes Since version 7.0.

Mac OSX Yes Since OS X version 10.7 Lion.

Solaris Yes Since Solaris 10.

Windows No

No Windows version including Windows 7, 8, 10 and Windows RT supports SCTP.

Microsoft does not have any plans to add native SCTP (lack of customer demand

they say).

.Net No No support for SCTP in .Net framework including version 4.6.2.

Java (Yes)
API available under com.sun.nio.sctp since Java 7.

Requires native SCTP (kernel) support by the underlying OS.

Cisco IOS Yes Since IOS 12.

QNX Neutrino Real Time OS Yes Since 6.3.0.

Android Yes Needs the activation of the lksctp libary in the Linux kernel.



© Peter R. Egli 2017
45/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

15. SCTP API in Linux (socket interface)
On Linux, 2 APIs are available for using SCTP sockets.

1. Standard socket interface

• Linux header file: include/sys/socket.h
• listenSock = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

2. Socket extensions for SCTP:

• Defined in RFC6458

• Linux header file: include/net/sctp/sctp.h

SCTP

Standard Socket API

(include/sys/socket.h)

SCTP user

application (ULP)

L3

L1 & L2

SCTP Socket API

(include/net/sctp/sctp.h)

SCTP specific API.

Full support of all SCTP features.

Standard socket features only.

SCTP features like streams not available.

http://www.rfc-editor.org/rfc/rfc6458.txt


© Peter R. Egli 2017
46/46

Rev. 2.30

SCTP – Stream Control Transmission Protocol peteregli.net

Glossary

Term Description Term Description

APDU Application PDU OSI Open Systems Interconnect

API Application Programming Interface PDU Protocol Data Unit

CA Congestion Avoidance PMTU Path MTU

CRC Cyclic Redundancy Check RTO Retransmission TimeOut

DTLS Datagram TLS SACK Selective ACK

HMAC Hashed Message Authentication Code SCTP Stream Control Transmission Protocol

HTTP Hypertext Transmission Protocol SS Slow Start

IETF Internet Engineering Task Force TCB Transport Control Block

IP Internet Protocol TCP Transmission Control Protocol

IPSec IP Security TLS Transport Layer Security

L1, L2, L3 Layer 1, Layer 2, Layer 3 TSN Transmission Sequence Number

MTU Maximum Transfer Unit ULP Upper Layer Protocol

OS Operating System UM User Message

Change History

Version Date of Publishing Description

2.10 2017-05-30 Previous version

2.20 2017-10-13

Page 43 corrected RFC number for SCTP over IPSec.

Page 43 added DTLS over SCTP RFC6083.

Page 44 added latest Windows and .Net versions lacking support for SCTP.

Page 46 added glossary.

2.30 2017-10-25 Page 43 added SCTP-AUTH Chunks.

http://www.rfc-editor.org/rfc/rfc6083.txt

