
© Peter R. Egli 2015
1/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF THE ANDROID
NATIVE DEVELOPMENT KIT

ANDROID
NDK



© Peter R. Egli 2015
2/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

Contents
1. What you can do with NDK

2. When to use native code

3. Stable APIs to use / available libraries

4. Build native applications with NDK

5. NDK contents and structure

6. NDK cross-compiler suite

7. Android EABI

8. NDK C++ support

9. JNI - Calling native functions from Java code

10. SDK project with native code

11. Native activity



© Peter R. Egli 2015
3/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

1. What you can do with NDK
• Build native libraries that are callable from Android Java application code (JNI).

• Build executables (non-recommended use of NDK).

• Debug native program (with gdb).

Android Java application

Native library (*.so)

JNI

Dalvik VM
Recommended use of native functions:

An Android Java application makes native

calls through JNI.

Thus the entire application running in the VM

is subject to the defined

Android application lifecycle.

It is possible to run entirely native applications

on Android. However, it is

recommended to use a small Java wrapper

for managing the lifecycle of the application

(start, stop).

Android application (*.apk)

Stable native libraries

(libc, libm, liblog …)



© Peter R. Egli 2015
4/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

2. When to use native code
The power of Android lies in the rich Java application framework to be used by Android

applications written in Java.

In special cases, however, it may be required to write native code that directly runs on the CPU 

without the Android VM interpreter.

NDK is a toolkit for writing and integrating native code with Java application code.

Native code characteristics for use in Android:

• Graphically and computationally intensive (e.g. complex algorithms)

• Few library dependencies (restricted to stable Android libraries provided by NDK)

• Little interaction between Java application code and native code (ideally, the Java 

application calls computationally intensive native functions and receives the result; there

should not be frequent calls and callbacks between Java and native code)

Primary uses of NDK:

NDK should be used to build native libraries (shared objects) that are called by an Android

application.

Entirely native applications without Java code are possible starting from Android 2.3 

(Gingerbread) by using NativeActivity.

Non-recommeded uses of NDK:

Custom native applications that run outside the VM.



© Peter R. Egli 2015
5/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

3. Stable APIs to use / available libraries
The Android NDK contains a small number of stable libraries that are guaranteed to be

contained in successive Android versions.

It is recommended that native code only make use of these stable libraries. If native code uses

non-stable libraries, the native application may break upon an Android update.

android-3 android-4

android-5

android-6

android-7 android-8 android-9 android-14

Library Description Android 1.5 Android 1.6 Android 2.0 Android 2.2 Android 2.3 Android 4.0

crtbegin_dynamic.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtbegin_so.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtbegin_static.o Calls of global object ctors Yes Yes Yes Yes Yes Yes

crtend_android.o Calls of global object dtors Yes Yes Yes Yes Yes Yes

crtend_so.o Calls of global object dtors Yes Yes Yes Yes Yes Yes

libandroid.so Functions for access to Java platform from native code No No No No Yes Yes

libc.so Standard C library (bionic) Yes Yes Yes Yes Yes Yes

libdl.so Dynamic linker library Yes Yes Yes Yes Yes Yes

libEGL.so Interface library for low level graphics buffer access No No No No Yes Yes

libGLESv1_CM.so Open GL graphics library No Yes Yes Yes Yes Yes

libGLESv2.so Open GL graphics library No No Yes Yes Yes Yes

libjnigraphics.so C-function-based library for graphics pixel access No No No Yes Yes Yes

liblog.so Android logging library Yes Yes Yes Yes Yes Yes

libm.so Math library Yes Yes Yes Yes Yes Yes

libOpenMAXAL.so Audio and video streaming library No No No No No Yes

libOpenSLES.so Audio streaming library No No No No Yes Yes

libstdc++.so Minimal C++ library (no exceptions, no RTTI) Yes Yes Yes Yes Yes Yes

libthread_db.so Thread debug support library. Yes Yes Yes Yes Yes Yes



© Peter R. Egli 2015
6/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

4. Build native applications with NDK
The NDK build system is made for creating .a (static libs) and .so (shared libs).

The shell script <NDK-base>/ndk-build creates the library output.

With some minimal effort it is possible to create fully native applications:

ndk-build
C/C++

source

NDK

arm-eabi-gcc

NDK

arm-eabi-ld

NDK

Prebuilt

libraries

.o

.a

.so

C/C++

source

(main)

Native

executable



© Peter R. Egli 2015
7/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

5. NDK contents and structure (1/2)
NDK installation simply requires unzipping it to a suitable location.

NDK contains a cross-toolchain for ARM and x86 based CPUs, header files and stable libraries.

NDK R7 structure:

Build scripts (makefiles, awk scripts etc.)

Documentation (HTML)

Platforms (header files and stable libraries)

Build executables (make, awk, sed, echo)

Samples (hello world, JNI example etc.)

Source files that can be linked to an application or library

Test scripts for automated tests of the NDK

ARM Linux and x86 toolchains (compiler, linker etc.)

Documentation entry point

Makefile for building NDK

Build script for building a native application or library

Experimental Windows native build script (working?)

GDB debug start script

Stack trace analysis tool

Readme file

NDK release identifier (contents for R7: r7d)



© Peter R. Egli 2015
8/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

5. NDK contents and structure (2/2)
The platforms sub-folder contains stable header files and libraries.

Android API-level 9 (Android 2.3)

ARMv7 CPU architecture header files and libs ('sysroot')

Stable Android API header files and libraries

C++ headers and libraries are under <NDK-base>/sources/cxx-stl.



© Peter R. Egli 2015
9/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

6. NDK cross-compiler suite (1/3)
Standard naming convention for cross-compilers:

<arch>-<vendor>-(os)-<abi>

Example:
arm-linux-androideabi-c++.exe

 Architecture (CPU): ARM

 Vendor: None

 OS: Linux

 ABI: Android EABI (see below)

NDK toolchains:

NDK contains GNU-based cross-compile tools for ARM7 and x86 CPUs.

The NDK toolchain can be used for:

a. NDK integrated toolchain for building shared libraries for use in an Android application

b. Standalone toolchain that is invoked by a custom build



© Peter R. Egli 2015
10/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

6. NDK cross-compiler suite (2/3)
a. NDK integrated toolchain:

Location: <NDK-base>/toolchains/arm-linux-androideabi-4.4.3/prebuilt/windows (likewise for

x86 toolchain).

The NDK integrated toolchain uses the scripts, header files and library files that are part of the

NDK installation.

NDK 

toolchain

(ndk-build)



© Peter R. Egli 2015
11/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

6. NDK cross-compiler suite (3/3)
Standalone toolchain:

The NDK standalone toolchain is useful for situations where another build system, e.g. as part

of an open source package, needs to invoke a cross-compiler for building.

In the standalone toolchain, everything that is needed for building (compilers etc., header files, 

library files) is contained in a single location.

How to create standalone-toolchain:

1. Start bash shell (on Windows start cygwin shell as administrator)

2. Run the make standalone toolchain command:
/cygdrive/c/install/Android-NDK/android-ndk-r7b/build/tools/make-

standalone-toolchain.sh --platform=android-9 --install-

dir=/cygdrive/c/temp/android-standalone-toolchain/

How to invoke the standalone-toolchain:
SET PATH=c:\temp\android-standalone-toolchain;%PATH%

SET CC=arm-linux-androideabi-gcc.exe

%CC% -o foo.o –c foo.c



© Peter R. Egli 2015
12/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

7. Android EABI
What is an ABI?

ABI (Application Binary Interface) defines how an application interacts with the underlying

system at run-time.

An ABI is a low-level interface definition that comprises the following:

- CPU instruction set to use

- Endianness of memory load and store operations

- Format of executable binaries (programs, libraries)

- Function call conventions (stack framing when functions are called, argument passing)

- Alignment of structs and struct fields, enums

The goal of an ABI is binary compatibility between executables (e.g. program calling a library

function).

An EABI (Embedded ABI) defines an ABI for embedded targets.

Android EABI:

Android EABI is basically identical to the Linux (GNU) EABI with the difference of the C-library

(bionic C-library instead of GNU C-library).

Android provides 3 EABIs:

a. armeabi (ARMv5TE instruction set, thumb mode)

b. armeabi-v7a (Thumb-2 instruction set extensions, hardware floating point support)

c. x86 (IA-32 based instruction set)

For more details see <NDK-base>/docs/CPU-ARCH-ABIS.html



© Peter R. Egli 2015
13/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

8. NDK C++ support
NDK provides some basic C++ runtime support through the default /system/lib/libstdc++ 

library.

The following C++ features are not supported:

- C++ exceptions

- RTTI (Run-Time Time Information)

- Standard C++ library

C++ runtimes:

NDK provides different libraries (run-times) with different levels of C++ support:

Application files must all be linked against the same runtime library (mixing is not possible).

The C++ runtime is specified in the (optional) Application.mk makefile.

Static versus shared libraries:

Shared libraries are the preferred mode of library use to conserve space (library not contained

multiple times in different executables) and avoid problems with global library variables.

More details see CPLUSPLUS-SUPPORT.html.

C++ Runtime Library C++ exceptions RTTI Standard C++ library

system libstdc++ No No No

gabi+ libgabi++ No Yes No

stlport libstlport No Yes Yes

gnustl libgnustl Yes Yes Yes



© Peter R. Egli 2015
14/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

9. JNI - Calling native functions from Java code
Java code:

Declaration of native function that is contained in a library.

Native code:
jstring

Java_<path to Java package>_<Java-Class>_<function-name>(JNIEnv* env,

jobject thiz)

{

…

}

where JNIEnv identifies the JNI context of the calling VM and jobject is a reference to

the calling Java object.



© Peter R. Egli 2015
15/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

10. SDK project with native code
1. Build native sources to library with ndk-build

2. Compile Android Java sources with ADT plugin

3. Create Android application package (.apk) with ADT plugin

NDK 

toolchain

(ndk-build)

NDK 

toolchain

(ndk-build)

.apk



© Peter R. Egli 2015
16/16

Rev. 1.50

Android NDK – Native Development Kit peteregli.net

*.apk package

11. Native activity
Android provides to possibility to implement a completely native activity.

Possible use cases:

a. Games (direct access from native code to graphics)

b. Use of existing application code available in C++

 Native activities are still running in the VM. Thus the lifecycle for normal Android application

still applies.

 Native activities can be started in 2 ways:

Java wrapper

Native 

activity in 

C/C++

 Small Java Wrapper starts native activity

 Attribute HasCode=true in manifest

Native 

activity in 

C/C++

*.apk package

 Native activity directly started

 Attribute HasCode=false in manifest


