
© Peter R. Egli 2017
1/33

Rev. 3.10

Microsoft .NET peteregli.net

Peter R. Egli
peteregli.net

INTRODUCTION TO MICROSOFT'S
.NET TECHNOLOGY

MICROSOFT
.NET

© Peter R. Egli 2017
2/33

Rev. 3.10

Microsoft .NET peteregli.net

Contents
1. What is .NET?

2. .NET platform overview

3. .NET history and versions

4. CLR - Common Language Runtime

5. .NET framework code generation

6. CTS – Common Type System

7. .NET garbage collection

8. .NET application domains

9. .NET assemblies

10. Overview of .NET components / libraries

11. .NET versus Java

12. .NET programming guidelines

© Peter R. Egli 2017
3/33

Rev. 3.10

Microsoft .NET peteregli.net

1. What is .NET?
.NET introduces the concept of managed applications. Win32 applications are unmanaged,

i.e. run natively on the Windows OS (WinXP, Win7, Win8 etc.).

.NET is an addition to the Windows OS. Managed applications run in the .NET runtime, i.e.

the byte code is executed by a virtual machine which executes functions like type checks at

runtime.

Operating System / Hardware

Hardware

.NET Runtime

Class Library (FCL)

Custom Object Libraries

Managed Applications

IIS (Web Server)

ASP.NET Runtime

Managed

Web Applications

Unmanaged

Applications

.NET

© Peter R. Egli 2017
4/33

Rev. 3.10

Microsoft .NET peteregli.net

Framework Class Library (FCL)

Common Language

Runtime (CLR)

Class Loader

Garbage Collection (GC)

IL Compiler

Security

Common Type System (CTS)

Common Language Specification (CLS)

.NET Compliant Languages (C#, VB.NET, VC++, F# etc.)

2. .NET platform overview
The .NET platform defines core services such as a type system as well as a wealth of libraries.

Memory

Management
Type System

Lifecycle

Management

IL Compiler Execution Support

System Base Class Library (BCL)

ADO.NET

XML SQL Threading

IO .NET Security Service Process

WinForms WPF WCF WF

ASP.NET

© Peter R. Egli 2017
5/33

Rev. 3.10

Microsoft .NET peteregli.net

.NET

V4.5

3. .NET history and versions

.NET Framework:

Standard framework for desktop and server hosts.

.NET Compact Framework:

Strippted-down .NET FW for embedded devices, based on Windows CE / Windows Embedded

Compact.

.NET Micro Framework:

Variant for „deeply“ embedded devices (no OS required, .NET is the OS).

2000

First mention of

.NET by Bill Gates

.NET

V1.0

2002 2003 2005 2006 2007

.NET

V1.1

.NET

V2.0

.NET

V3.0

.NET

V3.5

First versions of

.NET FW and CF

First version

of .NET MF

.NET

V4.0

2010 2012 2014

.Net

becomes

Open

Source

2015

.NET

V4.6

© Peter R. Egli 2017
6/33

Rev. 3.10

Microsoft .NET peteregli.net

4. CLR - Common Language Runtime (1/3)
The common language runtime is the centerpiece of .NET.

It provides an abstracted and generalized interface for application code.

Multiple language support:

.NET supported multiple languages from the outset.

The languages supported by Microsoft are C#, F#, VB.NET and managed C++.

Third party vendors, however, may provide additional languages such as Fortran or Haskell.

Common type system:

A common type system allows writing parts of applications in different managed .NET languages

(usually C#, VB, managed C++).

This is an improvement over ATL (Active Template Library) or COM (Component Object Model)

technologies that required to write complicated wrappers to connect code written in different

languages.

CTS also supports cross-language inheritance.

Garbage collection:

A garbage collector in the background transparently deallocates unused objects thus freeing

the developer from allocation and deallocation duties.

© Peter R. Egli 2017
7/33

Rev. 3.10

Microsoft .NET peteregli.net

4. CLR - Common Language Runtime (2/3)
Strong type checking, inspection / reflection:

Type checks at compile and runtime assure that types are compatible.

Reflection allows inspecting types at runtime.

Version checks:

Libraries are loaded by the CLR. On loading it performs version compatibility checks (find

a compatible version of a required library).

The CLR also supports side-by-side execution (simultaneous execution of different versions

of the same library).

In this respect, the CLR goes farther than the Java class loader which loads Jar-files based on

the class path (location only).

Unified exception handling:

Exception handling is unified across the different languages.

Just In Time (JIT) compilation:

CLR is performance optimized due to JITing of CIL to native code. Performance can even

exceed that of native C/C++ in certain cases.

Interoperability with COM:

The CLR supports interoperability with legacy COM-objects as well as calls to Win32 DLLs

(native calls).

© Peter R. Egli 2017
8/33

Rev. 3.10

Microsoft .NET peteregli.net

4. CLR - Common Language Runtime (3/3)
Architecture of .NET CLR:
Applications are loaded and started by the .NET Runtime Host (aka App Domain Host).

1. Runtime host loads execution engine (EE) into memory

2. Runtime host loads application into memory

3. Runtime host passes the application to the CLR to be started

Application domain = Win32 process (execution environment of application, basically a container of

application threads).

.NET Framework CLR

Host OS (Windows)

Platform Adaptation Layer
(Base Services: Threads, Timers, Sync., Memory, Math, Sockets etc.)

Execution Engine, EE (= „MSCOREE.DLL“)

Native

Managed

Framework Class Library (FCL)

Device Specific Class Libraries

Applications

.N
E

T
 R

u
n

ti
m

e
H

o
s

t

(A
p

p
 D

o
m

a
in

 H
o

s
t)

Load

© Peter R. Egli 2017
9/33

Rev. 3.10

Microsoft .NET peteregli.net

IL+

meta-

data

IL+

meta-

data

5. .NET framework code generation (1/2)
Code production in .NET is a 2-step process.

C#

Source

C#

compiler

IL

+

meta-

data

Managed

modules

PE header

CLR header

Metadata

IL code

Type of file (DLL, GUI, CUI)

CUI: Command User Interface

IL: Intermediate Language

Res.: Resource

PE: Portable Executable

DLL: Dynamic Link Library

Version of CLR, resources, entry point etc.

Exported (provided) and imported (used) types

The code in IL format

View headers with CIL Disassembler

(C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\ildasm.exe)

IL+

meta-

data

Assembly

Res.

file
Res.

file

Manifest

IL+metad.

IL+metad.

Assembly = collection of managed modules and resource files.

Manifest = list of modules.

An assembly is a reusable, deployable and versionable component.

Assemblies are self-describing (no additional info in registry or

anywhere else needed for CLR to execute the assembly).

C#

compiler

VB.NET

Source

VB.NET

compiler

IL

+

meta-

data

VC++

Source

VC++

compiler

IL

+

meta-

data

© Peter R. Egli 2017
10/33

Rev. 3.10

Microsoft .NET peteregli.net

5. .NET framework code generation (2/2)
Just In Time compilation (JIT):

The Just In Time compiler of the CLR translates IL code into machine code.

 The performance penalty of the translation at runtime applies only for first the call of a

method. For subsequent calls, the CLR re-uses the JIT-compiled native method code.

 During compilation the JIT compiler of the CLR performs a verification to ensure that the

code is safe. Security checks comprise type safety checks, checks of the correct number of

parameters etc.

 JIT compiled code is potentially even faster than native code because the JIT compiler uses

runtime information for the compilation / optimization.

Assembly

Manifest

IL+metad.

IL+metad.

JIT

compiler

Machine

code

© Peter R. Egli 2017
11/33

Rev. 3.10

Microsoft .NET peteregli.net

6. CTS – Common Type System (1/3)
CTS is the type foundation for the .NET framework.

CTS defines that:

 A type may contain zero or more members:

Member = field | method | property | event

 Rules for type visibility:

public, protected, private, internal (=visible within assembly only)

 Type inheritance:

E.g. only single inheritance supported, thus C++ compiler will

complain if a managed C++ class derives from multiple base classes.

 Common base type:

All types inherit from the „mother of all types“ = System.Object (everything is

an object).

CTS defines a standardized type system common to all .NET languages.

CLS (Common Language Specification) is the basis for

interworking of code written in different (managed) .NET languages.

CLS is the base set of language features that should be supported

by a .NET language thus allowing to use a type written in one

language in another language.

CLS applies to public members („public“ and „protected“) only.

Private members are not affected by CLS.

VB

C++C#

CLS

CLR / CTS

© Peter R. Egli 2017
12/33

Rev. 3.10

Microsoft .NET peteregli.net

6. CTS – Common Type System (2/3)
CTS type hierarchy:

The type system comprises value types

and reference types.

Value types:

Value types directly contain their data.

Reference types:

Reference types store a reference to the value‘s memory address.

Value

Reference Value

Type

Reference Types

Pointer Types

Interface Types

Self-describing Types

Arrays

Class Types

User-defined Classes

Boxed Value Types

Delegates

Value Types

Built-in Value Types

User-defined Value Types

Enumerations

© Peter R. Egli 2017
13/33

Rev. 3.10

Microsoft .NET peteregli.net

6. CTS – Common Type System (3/3)
Boxing:

Every value type has a corresponding reference type called «boxed type».

Some reference types have a corresponding unboxed value type.

CTS built-in types:
• bool

• char

• int8, int16, int32, int64

• unsigned int8, unsigned int16, unsigned int32,

• unsigned int64

• native int, native unsigned int

• float32, float64

• System.object, System.string

Type info

value = 42

Boxed (value is wrapped in an object)

value = 42 Unboxed

© Peter R. Egli 2017
14/33

Rev. 3.10

Microsoft .NET peteregli.net

7. .NET garbage collection (1/4)
Garbage collection procedure:

The garbage collector periodically sweeps heap memory and reclaims unused objects thus

offloading the application programmer from memory management.

N.B.: Garbage collector avoids memory leaks, but „Out of memory“ exceptions may still occur!

Global and static pointers
CPU registers with heap pointers

Thread stack object pointers

Memory heap with application

objects before garbage collection

Application roots with

pointers into the heap

Objects that are accessible from application roots.

These objects are not subject to garbage collection.

Objects that are inaccessible from application roots.

These objects can be released.

GC

Free memory

Heap

Memory heap with application

objects after garbage collection

Heap

Logical tree of objects

and references

© Peter R. Egli 2017
15/33

Rev. 3.10

Microsoft .NET peteregli.net

7. .NET garbage collection (2/4)
GC phases:

Phase 1: Mark

 Find and mark garbage-collectable objects.

1. GC assumes all objects on heap to be garbage.

2. GC identifies application roots (static object pointers, registers etc.).

3. GC walks the roots and builds a tree of objects reachable from roots (=live objects).

Phase 2: Relocate

 Relocate non-collectable objects.

GC adjusts pointers in (non-collectable) objects to other (non-collectabe) objects.

Phase 3: Compact

 Move non-collectable objects, free collectable objects.

1. GC walks through the heap linearly marking all garbage objects.

2. GC shifts non-garbage objects down in memory thus removing gaps in the heap.

3. Frees garbage objects (adds them to the finalizer queue first).

N.B.: GC needs to freeze all threads to protect the heap (no accesses to heap during GC, «Stop

the world»).

The GC execution duration depends on the number of objects.

Thus the GC execution is undeterministic.

© Peter R. Egli 2017
16/33

Rev. 3.10

Microsoft .NET peteregli.net

7. .NET garbage collection (3/4)
Triggers of .NET FW GC:

1. Low physical memory

2. Objects allocated on the managed GC heap exceed a threshold

3. GC.Collect() called

Generational GC:

.NET FW implements a generational GC.

Objects that are not collected in the current GC run in the current generation are elevated to a

higher generation.

Higher generation garbage collection is run less frequently.

Purpose: Identify long-lived objects and avoid frequent GC on these objects thus increasing

the performance.

Generation 0: Youngest objects (short-lived objects such as temporary variables)

Generation 1: Short-lived objects, buffer between generation 0 and generation 2 objects.

Generation 2: Long-lived objects such as objects with static data that live as long as the

application process exists.

© Peter R. Egli 2017
17/33

Rev. 3.10

Microsoft .NET peteregli.net

7. .NET garbage collection (4/4)
Garbage collection thread:

GC is run in the (application or system) thread that is active when the GC kicks in.

This means that thread execution time is undeterministic (GC runs for an undeterministic

duration).

Thread 1

Thread 2

Thread 2

Suspended

Suspended

Object allocation

Object allocation

Object allocation

Object allocation

Object allocation

Object allocation

GC

All other threads stopped.

GC runs in the currently active

thread. Control is passed from the

currently active application to GC.

© Peter R. Egli 2017
18/33

Rev. 3.10

Microsoft .NET peteregli.net

8. .NET application domains (1/2)
Applications usually run in a process and consist of 1 or multiple threads.

The operating system provides isolation between the processes.

The memory is mutually protected through the MMU (threads in application processes can

not access the memory in the other process).

Communication between the processes is restricted to IPC (sockets, pipes, mapped files etc.).

Good protection

But:

Processes are heavy-weight (costly to create)

Application

process

1

Main

Thread

Thread

Thread

Process

memory

Application

process

2

Main

Thread

Thread

Thread

Threads have

access to the

shared memory.

Process

memory

© Peter R. Egli 2017
19/33

Rev. 3.10

Microsoft .NET peteregli.net

8. .NET application domains (2/2)
.NET 2.0 introduced the concept of application domains.

 Applications are isolated through application domains (no direct access of code or memory

from domain to domain).

 CLR runs as a process containing 1...n application domains.

 Multiple threads may run in a single application domain.

 An application domain is similar to a mini-OS (helps avoid use of costly processes for

isolation).

Protection

Lightweight (only 1 process to be created)

Application

domain

Application

domain

Main

Thread

Thread

Thread

Communication boundary:

a. .NET remoting (deprecated)

b. WCF with NetNamedPipeBinding

AppDomain

memory

Process

Main

Thread

Thread

Thread

AppDomain

memory

© Peter R. Egli 2017
20/33

Rev. 3.10

Microsoft .NET peteregli.net

9. .NET assemblies (1/5)
An assembly is a file that contains executable code and resources.

An assembly is either a DLL (.dll extension) or an executable (.exe extension).

Java equivalent: Jar-file.

Problems with Win32-DLLs ("DLL hell"):

Win32 DLL must maintain backward compatibility to ensure that existing depending

applications do not break when updating the DLL. This is difficult to achieve.

No way to enforce compatibility between DLL version and referencing application.

Improvements brought with Win2K:

A DLL can be placed into an application's folder thus ensuring other applications using

different versions of the DLL do not break.

Locking of DLLs placed in System32 folder so that they cannot be overwritten.

Solution introduced with .NET:

Versioning scheme: Every assembly has a version and a manifest defines that what version

of other assemblies an assembly requires.

Version checks performed on loading an assembly.

© Peter R. Egli 2017
21/33

Rev. 3.10

Microsoft .NET peteregli.net

9. .NET assemblies (2/5)
Assembly functions:

Assemblies fulfill the following functions:

1. Versioning (name and version uniquely identifies an assembly)

2. Security (types are fully contained in an assembly, assembly can be cryptographically

signed)

3. Deployment (assemblies are machine- and OS-independent deployment units for executable

code)

Assembly contents and structure:

Assemblies are self-describing in that they contain a manifest and meta-data that describes

their contents.

Assemblies may be either single-file (common case) or spread over multiple files (applicable

for scenarios where multiple teams work on a large program or library at the same time).

Single-file

assembly

Assembly manifest

Type metadata

CIL code

Resources

Manifest with references to external

libraries and description of assembly

contents.

Type metadata such as super-class

and which interfaces a type (class)

implements.

Code in portable CIL.

Resources (string, images etc.).

Assembly manifest

Type metadata

CIL code

Assembly manifest

Type metadata

Resources

Multiple-file

assembly

MyAssembly.dll

utils

MyPic.bmp

© Peter R. Egli 2017
22/33

Rev. 3.10

Microsoft .NET peteregli.net

9. .NET assemblies (3/5)
Assembly contents and structure:

The contents of an assembly can be disassembled with

Microsoft SDKs/Windows/v7.0A/Bin/ildasm.exe.

Required external assembly and version.

Assembly meta-information.

HelloWorld.exe

CIL code.

Assembly manifest

Type metadata

CIL code

Resources

© Peter R. Egli 2017
23/33

Rev. 3.10

Microsoft .NET peteregli.net

MyApp

9. .NET assemblies (4/5)
Private assembly and shared assembly:

Usually assemblies are stored in the application's folder (private assembly). In order to

conserve space, it is possible to make assemblies available for other applications by storing

them in the GAC (shared or global assembly).

Private assembly (default):

 Stored in application's folder.

 CLR assumes that assemblies are compatible and does not perform version checks on

loading assemblies.

 The compatibility is meant to be achieved by always deploying the entire application

including all dependencies (required assemblies) by XCOPY-deployment (just copy the

assemblies, do not register them in the system).

.exe

.dll

.dll

AnotherApp

.exe

.dll

.dll

© Peter R. Egli 2017
24/33

Rev. 3.10

Microsoft .NET peteregli.net

9. .NET assemblies (5/5)
Private assembly and shared assembly (2/2):

Shared assembly:

 Stored in Global Assembly Cache (GAC) (C:\Windows\assembly)

 Identification of assembly through strong name = assembly name +

version number + culture information (if available) + public key and digital signature.

This combination of information guarantees uniqueness of an assembly name.

 The CLR checks and verifies the strong name on loading the assembly.

GAC Version = <major version>.<minor version>.<build number>.<revision>

Assembly name = user defined name

Culture = RFC1766 language identifier (optional) Key token (signature)

© Peter R. Egli 2017
25/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (1/6)
ASP.NET:

Web application framework for building dynamic web pages.

ASP.NET is the successor to ASP technology (Active Server Pages).

ASP.NET allows inlining code and declaring code behind that and fills a part of a web page.

Inline model:

Code behind model:

Code and HTML markup are contained

in the same file (Default.aspx).

Default.aspx

Default.aspx.cs

© Peter R. Egli 2017
26/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (2/6)
ADO.NET:

Classes for consistently access data sources such as relational DBs (SQL) and XML-based

data.

The main components of ADO.NET are data providers that provide access to data sources

and data sets that provide a generic application interface (API) for accessing the data

independently of the actual data source.

Application

The application interfaces to

data sources indirectly

through data set classes.

The specifics of the data

access (SQL, DB connection

etc.) are hidden

to the application.

DataSet

DataTableCollection

DataTable

DataRowCollection

DataColumnColl.

ConstraintColl.

DataRelationCollection

.NET Framework Data Provider

DataAdapter

SelectCommand

InsertCommand

UpdateCommand

UpdateCommand

Connection

Transaction

Command

Parameters

DataReader

DataBase

XML

© Peter R. Egli 2017
27/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (3/6)
WinForms:

WinForms is the most widely used GUI technology.

WinForms are somewhat limited in their graphical capabilities (color gradients, blending effects

etc.) so a newer technology named WPF was introduced (see below).

WinForms pros and cons:

Low entry level, simple to use.

No strict MVC model (model – view – controller).

No strict separation of business logic and UI code.

Event method containing event handling code

© Peter R. Egli 2017
28/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (4/6)
WPF (1/2):

WPF was introduced with .NET FW 3.0 as a successor to WinForms providing enhanced

graphical capabilities and a declarative GUI definition model with XAML.

 Enforce separation of business logic and GUI logic

 WPF uses declarative XAML (eXtensible Application Markup Language) language to describe

the GUI

 WPF supports 3 different data bindings of UI controls to data sources (one time, 1-way, 2-

way)

© Peter R. Egli 2017
29/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (5/6)
WPF (2/2):

Microsoft promotes the MVVM (Model View ViewModel) model to connect UI with business

logic or a data access layer.

MVVM is very similar to the MVC (Model View Controller) pattern.

View ViewModel Model

Class objects holding

or providing access

to data.

May also be pure

business logic objects.

.xaml

.xaml.

.cs

XAML code to

describe the

view.

Optionally there may be

some code behind that

does pure UI logic

(rendering).

DB

.cs

The ViewModel

connects the view

with model objects.

Core code

behind is

in ViewModel.

.cs
Simple data access objects

without business logic.

The view defines

the graphical properties

and how the data is

presented to the user.

© Peter R. Egli 2017
30/33

Rev. 3.10

Microsoft .NET peteregli.net

10. Overview of .NET components / libraries (6/6)
WCF:

WCF is the successor to various communication technologies and introduces a common

message-based communication model.

WCF is service-oriented and clearly separates interface (contract) from address and binding

(transport protocol to be used).

LINQ:

LINQ (Language Integrated Queries) is a new language-construct that allows placing SQL-like

queries directly into source code (internal DSL – Domain Specific Language).

Message-oriented

communicationWCF provides a

unified API for various

communication models.

WCF client

(.NET program)

WCF

.NET FW

MSMQ

TCP/IP

DCOM WS

HTTP

WCF service

(.NET program)

WCF

.NET FW

MSMQ

TCP/IP

DCOM WS

HTTP

© Peter R. Egli 2017
31/33

Rev. 3.10

Microsoft .NET peteregli.net

11. .NET versus Java
Both .NET and Java share similar concepts.
Differentiating features of .NET:

• Multi-language

• Better integration of native code into managed code (use of „unsafe sections“)

• Faster specification process; Java is partly developed by the community (JCP – Java Community Process)

which tends to be slower than a process driven by a company with commercial interests.

But:

• .NET is mainly limited to Microsoft OS (there are .NET clones such as Mono, but the legal situation is

unclear).

Source: Microsoft Source: Sun Microsystems

© Peter R. Egli 2017
32/33

Rev. 3.10

Microsoft .NET peteregli.net

12. .NET programming guidelines (1/2)
Programming managed code (C#) is not fully transparent to the programmer.

Some guidelines need to be observed to achieve sufficient performance.

Recycle expensive resources:

Expensive resources such as threads should be recycled (use a thread pool that is initialized

at process start).

Lazy initialization:

Initialize lazily (load and initialize things just before usage, do not load everything at

application start).

Use background workers:

Do work in the background to improve the perceived performance.

Use object allocation with care:

Use object allocation only when needed, recycle objects (frequent object allocation /

deallocation results in longer GC periods).

Unmanaged resources:

The lifecycle of unmanaged resources is still under the responsibility of the developer.

Use patterns like the Dispose-pattern to safely de-allocate unmanaged resources (see below).

© Peter R. Egli 2017
33/33

Rev. 3.10

Microsoft .NET peteregli.net

12. .NET programming guidelines (2/2)
Finalization pattern:

Problem with GC:

Finalize() is called as part of the GC process by a background thread. This means that the

Finalize() on an object is undeterministic (it is unkown when Finalize() is called).

If precious unmanaged resources are only de-allocated in Finalize() they may be freed late or never.

The Dispose() pattern allows the user of an object to free these resources. If forgotten the CRL will eventually

free the unmanaged resources by calling Finalize().

N.B.: A class can have either a destructor (~MyClass()) or a Finalize() method. The compiler automatically

creates a Finalize() method from a destructor if one is available.

Example:
// Design pattern for a base class.

public class Base: IDisposable {

//Implement IDisposable.

public void Dispose() {

Dispose(true);

GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing) {

if (disposing) {

// Free other state (managed objects).

}

// Free your own state (unmanaged objects).

// Set large fields to null.

}

// Use C# destructor syntax for finalization code.

~Base() {

// Simply call Dispose(false).

Dispose (false);

}

}

