
© Peter R. Egli 2017
1/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF MESSAGE ORIENTED MIDDLEWARE
TECHNOLOGIES AND CONCEPTS

MOM
MESSAGE ORIENTED

MIDDLEWARE

© Peter R. Egli 2017
2/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

Contents
1. Synchronous versus asynchronous interaction

2. Messaging models

3. Queue types

4. Message broker - application integration pattern

5. Features of message queue systems

6. Examples of MOM middleware

7. Comparison of JMS, MSMQ and AMQP middleware

8. Comparison of MOM with Internet messaging

© Peter R. Egli 2017
3/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

1. Synchronous versus asynchronous interaction (1/2)
Distributed Object Technologies (DOT), RPC:

 Synchronous operation (caller is blocked until callee returns).

Problems / drawbacks with this model of operation:

The client is blocked until the server (object operation) call returns (tight coupling).

Connection overhead (each call needs marshalling, entails protocol overhead for network

access etc.).

Difficult to react to failures (server may throw an exception, may not be active etc.).

Not well-suited for nested calls (server object calls back client object which potentially calls

another server object operation).

Simple remote call:

Client Server

1: Remote call

2. Server

processes

request

3: Return

Client is

blocked

Remote call with callback:

Client Server

1: Remote call

2. Server

processes

request

5: Return remote call

3: Callback

4: Callback returnClient is

blocked

© Peter R. Egli 2017
4/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

1. Synchronous versus asynchronous interaction (2/2)
Message Oriented Middleware (MOM):

 Asynchronous operation (caller sends a message and continue its work, „fire and forget“).

 Store and Forward communication.

 Sender & receiver are loosely coupled:

a. They do not need to be active at the same time.

b. The sender does not need to know the receiver location and vice versa.

Analogy:

Synchronous (RPC/DOT) Telephone

Asynchronous (MOM) Mail

Sending

application
Receiving

applicationNetwork

Send queue Receive queue

Non-blocking

message

send operation

Receiving systemSending system

© Peter R. Egli 2017
5/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

2. Messaging models
1. P2P - Point to Point:

• 1 queue per receiver (application).

• One-to-one (1 sender, 1 receiver) or many-to-one messaging (many senders, 1 receiver).

2. Publish – Subscribe („PubSub“):

• One-to-many or many-to-many distribution of messages (same message may be received by

multiple receivers if these are subscribed).

• Similar to a message board.

Sending

application

Sending

application

Receiving

application

Sending

application

Sending

application

„Message

board“

Publish

message

Publish

message

Receiving

application

Receiving

application

Subscribe

Subscribe

Receive

message

Receive

message

1

2

1

1

2

2

© Peter R. Egli 2017
6/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

3. Queue types (1/2)
FIFO queues (first in, first out):

• All messages have the same priority level.

• Messages are delivered in the order they are sent.

Priority queues:

• Messages are buffered in FIFO queues and ordered based on priority.

• N.B.: The ordering applies to the set of messages that are in the queue at a specific

point in time (= messages that are not yet received by an application).

123

3

Sending

application

Receiving

application
123

Sending

application

Receiving

application

Prio 1 Prio 3 Prio 2 Prio 3 Prio 2 Prio 1Messages

are re-ordered

based on their

priority

3 2 1 1 32

© Peter R. Egli 2017
7/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

3. Queue types (2/2)
Public / private queues:

Defines different access rights:

1. Public queue: All senders may send messages without access control.

2. Private queue: Sending to a private queue requires sender authentication.

Journal queue:

The message queueing system keeps a copy of every received message for logging or

monitoring purposes.

Dead-letter queue:

Queue that holds undeliverable messages (messages that time out due to time-to-live (TTL)

expiry or whose queue address could not be resolved).

Bridge / connector queue:

Connects different queue systems, e.g. Microsoft Message Queue (MSMQ) and Java Messaging

System (JMS) based messaging systems.

© Peter R. Egli 2017
8/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

4. Message broker - application integration pattern (1/4)
Message brokers distribute messages to receivers.

Case 1: No message broker:

• Requires n*(n-1)/2 „connections“ between message queues. Every (endpoint) queue needs

to know all other queues to send message to these queues.

• The sender must know the location (address) of the receiver.

• This model becomes complex for large numbers of queues (it does not scale).

Bidirectional connections:

6 systems 6 * 5 / 2 = 15 „connections“

If every application needs to send

messages to all other applications,

6 * 5 = 30 „connections“ are required.

Application

Application Application

Application

Application Application

© Peter R. Egli 2017
9/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

4. Message broker - application integration pattern (2/4)
Case 2: Message broker:

• The message broker serves as a central exchange of messages (hub and spoke architecture,

broker routes messages to the destination queue).

• A message broker provides additional decoupling between senders and receivers.

• The broker may perform additional functions such as filtering, message transformations

(e.g. enrich messages with data from a DB) and load balancing.

Application

Application Application

Application

Application Application

Message broker = central message exchange

© Peter R. Egli 2017
10/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

4. Message broker - application integration pattern (3/4)
Case 3: Multi-hub message broker system:

• Generalization of message hub architecture (hierarchy of message hubs).

Application

Application

Application

Application

Application

ApplicationApplication

Application

© Peter R. Egli 2017
11/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

4. Message broker - application integration pattern (4/4)
Case 4: Federated message brokers:

• Generalization of the multi-hub message broker pattern.

• Applications are bound to a specific message broker („home message broker“).

• Message brokers are under the responsibility of different organizations (federation).

Case 5: PubSub broker:

Rather than distributing messages to queues, the message broker routes messages to

subscribers.

Thus messages may be sent to multiple receivers (multicast).

In JMS a PubSub broker is a called "topic".

Sending

application

Sending

application

Broker

Publish

message

Publish

message

Receiving

application

Receiving

application

Receive

message

Receive

message

1

2

1

1

2

2

© Peter R. Egli 2017
12/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

5. Features of message queue systems (1/4)
Asynchronous operation:

Sending of messages is unblocking. The sender application may continue its work, the sender

queue tries to deliver the message on behalf of the sender application (until successful).

Transaction support:

Sending and receiving a series of messages may be „packed“ into a transaction. Either all

messages are successfully sent and received or none.

In-order delivery:

Messages are queued in the order they are sent. However, messages may „overtake“ messages

other based on priorities.

Priority-based delivery:

Messages are queued according to a priority scheme (the receiver queue passes messages

with highest priority first to the receiving application).

© Peter R. Egli 2017
13/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

5. Features of message queue systems (2/4)
Message formatting:

Possibility to „wrap“ the messages into formats such as SOAP (messages are wrapped in

SOAP over HTTP protocols for better Internet traversal), XML or plain text.

Notification services (triggers):

Receiver: The queue sends notifications of new enqueued messages to the receiver.

Sender: The queue sends notifications of the successful delivery of sent messages

to the sender.

Message filtering:

The queue performs filtering based on different criteria:

• Message properties (message header fields), e.g. priority.

• Message body (e.g. SQL expression).

Message routing:

• Message forwarding through intermediate message queues (= brokers).

• Message routing may be based on different criteria (e.g. current workload on destination

queues for load balancing).

© Peter R. Egli 2017
14/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

5. Features of message queue systems (3/4)
Message security:

• Apply security functions like message authentication, encryption and message integrity.

Supported message transport protocols:

Messages may be transported over a range of different transport protocols.

Typical transport protocols used for message transport are:

• TCP or UDP (simplest transport protocol)

• HTTP or HTTPs (good for sending messages over the Internet)

• SMTP

• FTP

• Messaging system proprietary transport protocol

Message peek and receive:

Peeking allows a receiving application to receive a copy of a message from a queue.

The message is left in queue.

Only a receive operation actually removes the message from the queue ("pop" a message).

© Peter R. Egli 2017
15/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

5. Features of message queue systems (4/4)
Delivery mode, Quality of Service (QoS):

Exactly-once (guaranteed delivery, highest QoS):

• Persistent mode, messages survive queue crashes.

• The sending queue keeps the message in persistent store until it receives a positive

acknowledge of the correct reception of the message by the target application.

At-least-once (guaranteed delivery):

• Guaranteed delivery, but duplicates of messages may be sent to the application.

• The sending queue keeps the message in persistent store (like exactly-once).

• After a crash, the sending queue does not query the receiving queue if it already has

received the message, but just re-sends the message.

• If the sending queue crashed just prior to receiving the positive acknowledge from the

receiving queue, the message is delivered twice.

At-most-once (no delivery guarantee, lowest QoS):

• Non-persistent mode.

Sending

application

Persistent

queue

Network

(TCP/IP)

Persistent

queue

Receiving

application

Crash

© Peter R. Egli 2017
16/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (1/7)
IBM WebSphere MQ (1/3):

• Multiplatform MOM from IBM. Available on IBM platforms, .Net, Linux etc.

• Various APIs such as JMS, XMS (JMS API for .Net, C/C++), MQI (MQ native interface).

Main elements of WebSphere MQ:

Queue manager:

Container for a message queue.

The QM is responsible for transferring messages to

other queue managers over a message channel.

The queue manager may reside on the same host

as the application or on a separate host.

Application A

Queue Manager A

Network

Host A

Message

Channel Agent

Queue Manager B

Message

Channel Agent

Application B

Message channel

Host B

(queue manager for appl. B

is located on another host)

Host C

Client channel between

application and QM

QM D

Host D

Message channel

© Peter R. Egli 2017
17/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (2/7)
IBM WebSphere MQ (2/3):

The main supported topologies are:

1. Hub and spoke topology (point-to-point queues):

• Applications subscribe to "their" queue manager.

• Routes to hub QM are manually defined in spoke QMs.

Spoke

QM

Hub

QM

Spoke

QM

Spoke

QM

Server

appl.

Client

appl.

Client

appl.

Client

appl.

Spoke

QM

Client

appl.

Spoke

QM

Client

appl.

© Peter R. Egli 2017
18/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (3/7)
IBM WebSphere MQ (3/3):

2. Distributed PubSub:

• Applications subscribe to topics and send messages to multiple receivers (publish).

• 2 Topologies: Clusters and trees.

2.1. Cluster:

Cluster of queue manager connected by channels between QMs.

Published messages are sent to all connected queue managers of the published topic.

2.2 Tree:

Trees allow reducing the number of channels between the QMs.

PubSub cluster topology (source: www.redbooks.ibm.com

“WebSphere MQ V7.0 Features and Enhancements”)

PubSub tree topology (source: www.redbooks.ibm.com

“WebSphere MQ V7.0 Features and Enhancements”)

© Peter R. Egli 2017
19/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (4/7)
Sonic Software SonicMQ:

• P2P and PubSub messaging.

• Exactly-once delivery semantics.

• Support for message broker clusters with load balancing.

• Various messaging bridges to other queueing systems (JMS, IBM WebSphere MQ, Tibco

Rendezvous, FTP, Email).

Microsoft MSMQ:

• Guaranteed message delivery (message delivered even when queue is temporarily down).

• Message routing.

• Security (optional authentication and encryption).

• Priority-based messaging.

• Different message transport protocols.

• Bridge to IBM MQSeries messaging system available.

© Peter R. Egli 2017
20/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (5/7)
AMQP – Advanced Message Queueing Protocol

Why AMQP?

1. Lack of standardization:

There is little standardization in MOM products (mostly proprietary solutions).

For example, JMS is dependent on Java and does not specify a wire protocol but only an API.

Therefore different JMS providers are not directly interoperable on the wire level.

2. Need for bridges for interoperability:

To achieve interoperability between the different queueing systems, 3rd party vendors offer

bridges.

These bridges complicate the architecture / topology, increase costs and reduce performance

(additional delay).

© Peter R. Egli 2017
21/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (6/7)
AMQP characteristics:

• Open protocol for business messaging, with support of industry (Cisco, Microsoft, Red Hat,

Deutsche Bank, Microsoft etc.).

• Multi-platform / language messaging system.

• AMQP defines:

a. Messaging capabilities (called AMQP model)

b. Wire-level protocol for interoperability

• AMQP messaging patterns:

a. Request-response (messages delivered to a specific queue)

b. PubSub (messages delivered to a set of receiver queues)

c. Round-robin (distribution of messages to a set of receiver based on availability)

Main components of AMQP model:

Message queueMessage exchange:

Exchanges receive

messages and dispatch

these to queues.

Binding:

Defines the routing

of messages

to a message queue.

User

Applications send

(publish) messages

to exchanges

© Peter R. Egli 2017
22/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

6. Examples of MOM middleware (7/7)
MQTT – Message Queueing for Telemetry Transport:

Most MQ systems and protocols are aimed at backend and enterprise applications.

As such, these technologies are not suited for constrained devices like sensor nodes.

Such devices are typically contstrained in terms of memory, bandwidth and power.

MQTT is a message oriented protocol aimed at applications like wireless sensor networks, M2M

(Mobile 2 Mobile) and ultimately Internet of Things (large number of nodes and applications

loosely coupled through a messaging system).

TCP/IP based

network (wired, wireless)

App MQTT

Broker
App

App

Sensor

Node

App

Actor

Node

Application

© Peter R. Egli 2017
23/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

7. Comparison of JMS, MSMQ and AMQP middleware (1/2)

Service JMS MSMQ AMQP

Dead-letter queue Yes Yes Yes

Journal queue ~ Persistent delivery mode Yes (global and for each queue) ~ Persistent messages

Multicast / distribution list Topics Multicast, distribution lists, multiple

receiver format names

* Topics (pubsub)

* Fanout (send to all bound rx queues)

Message delivery QoS * Persistent delivery mode

* Different message ack

types

* Message priorities

Guaranteed message delivery:

* MSMQ transactions

* Recoverable message type

* Different message ack types

Yes (exactly-once delivery semantics

of a session):

* Persistent / non-persistent delivery

modes

* Message priorities

* Only message ack and no-ack

modes defined

Message routing More complicated routing

schemes based on

hierarchic topics and client

message selection filters

Yes (requires AD / Windows domain) Complex routing schemes possible

based on routing key (contains

destination matching criteria)

Security JMS specification itself

does not provide security

(left to the JMS provider)

Yes (optional authentication and

encryption)

Yes (SASL)

Peek queue (check if message

available without receiving)

Yes (QueueBrowser object) Yes No

Priority based messaging Yes (10 priority levels) Yes (8 priority levels) Yes (10 priority levels)

AD: Active Directory

QoS: Quality of Service (features for guaranteeing delivery)

SASL: Simple Authentication and Security Layer (RFC4422)

© Peter R. Egli 2017
24/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

7. Comparison of JMS, MSMQ and AMQP middleware (2/2)

Service JMS MSMQ AMQP

Message transport protocol JMS does not define a

specific transport (wire)

protocol (left to JMS

providers)

TCP, HTTP, HTTPs, native OS, SPX TCP & SCTP (UDP transport may be

added in future versions of AMQP)

Message transactions Yes Yes Yes

Receive triggers No client triggering (left to

JMS provider

implementation)

Yes Not part of the specification (AMQP

provider may add this functionality)

Message formatting None defined (JMS does not

define a wire protocol)

XML, binary, ActiveX format 1 binary wire protocol defined in the

specification

Acknowledgment types 3 acknowledgment types /

modes defined

Yes (8 different ack types) 2 modes (message acknowledgment

and no message acknowledgement)

SCTP: Stream Control Transmission Protocol (RFC4960), connection-oriented transport protocol with better characteristics than TCP

SPX: Sequenced Package Exchange (legacy Novell transport protocol)

© Peter R. Egli 2017
25/25

Rev. 2.30

MOM – Message Oriented Middleware peteregli.net

8. Comparison of MOM with Internet messaging
Message queue systems share many properties and characteristics with Email systems.

For many of the message queue concepts there is a corresponding concept in Email systems.

MOM / Messaging Email

MOM message SMTP message

Message queue Mailbox

Consumer POP3 / IMAP4 client

Producer SMTP client

Queue manager MTA (Mail Transfer Agent)

Routing key To: / Cc: address

Publish / subscribe Mailing list

Message filter E.g. server-side spam check

Message acknowledge Read receipt (MS Outlook), email tracking (embedded links)

Transactional messaging Not available

TTL „Expires“ header field

Communication between applications or components Communication between users

