
© Peter R. Egli 2017
1/24

Rev. 2.00

JMS – Java Message Service peteregli.net

Peter R. Egli
peteregli.net

INTRODUCTION TO JMS, JAVA'S 
MESSAGE SERVICE API

JMS
JAVA MESSAGE SERVICE



© Peter R. Egli 2017
2/24

Rev. 2.00

JMS – Java Message Service peteregli.net

Contents
1. What is JMS?

2. JMS messaging domains

3. JMS architecture

4. JMS programming model

5. JMS receive modes

6. JMS robustness features

7. Integrating JMS with EJB

8. JNDI (Java Naming and Directory Interface)

9. JMS 2.0



© Peter R. Egli 2017
3/24

Rev. 2.00

JMS – Java Message Service peteregli.net

1. What is JMS?
JMS is an API for asynchronous message exchange between Java applications.

JMS implementations (instances that implement the JMS API) are called JMS provider.

Different JMS providers are not directly interoperable due to the lack of a defined wire protocol

in JMS. JMS vendors usually provide bridges to connect to other JMS providers.

JMS is standardized as JSR-914 (Java Specification Request).

JMS provider

JMS API
JMS

spec.

Example JMS providers (implementations):

* IBM WebSphere MQ

* Tibco EMS™ (Enterprise Message Service)

* Progress Software SonicMQ

* Oracle AQ (Advanced Queueing)

* OpenMQ (part of Glassfish ref. impl.)

* ActiveMQ™ (Apache project)

* JBossMQ

<<defines>>

<<implements>>



© Peter R. Egli 2017
4/24

Rev. 2.00

JMS – Java Message Service peteregli.net

2. JMS messaging domains (1/2)
JMS supports the 2 messaging modes P2P (point-to-point) and PubSub (publish-subscribe).

These message modes are also called messaging domain in JMS-speak.

P2P messaging domain:

• Each message has only 1 consumer.

• There is no timing relation between sender and receiver (the sender, client 1, may send 

before the receiver, client 2, is started).

Client 1 Client 2

Message Message

P2P queue
Receive

Acknowledge
Send



© Peter R. Egli 2017
5/24

Rev. 2.00

JMS – Java Message Service peteregli.net

3. JMS messaging domains (2/2)
PubSub messaging domain (topic):

• PubSub queues are called topic.

• Each message may have multiple consumers / receivers.

• There is a weak timing relation: subscribers (client 2 and 3 in the figure below) will only

receive messages received by the topic after the subscription.

• Option Durable subscription: consumer can register a permanent subscription that survives

a reboot.

Client 1

Message

Topic

Client 2
Receive

Subscribe

Client 3
Receive

Subscribe

Publish

Message

Message



© Peter R. Egli 2017
6/24

Rev. 2.00

JMS – Java Message Service peteregli.net

4. JMS architecture
JMS is an interface specification. JMS providers implement the messaging services (basically

implement a queue or topic).

JMS makes heavy use of JNDI for lookup / discovery.

Queues, topics and connection factories are administratively created through an administrative

tool.

JNDI

Interfaces

JMS

Interface

JMS provider:

- implements the JMS interface

- provides administrative and control interfaces

JNDI namespace:

Contains bindings for connection factories and

destinations

JMS

Provider
JMS

Client

Admin

Tool
JNDI

Namespace
Bind

Connection



© Peter R. Egli 2017
7/24

Rev. 2.00

JMS – Java Message Service peteregli.net

5. JMS programming model (1/5)
The building blocks of JMS are factories, connections, sessions, message producers and

consumers and messages.

Message

Producer

Destination

Sends to

Session

Creates

Connection

Creates

Message

Consumer

Creates

Destination

Receives fromCreates

Connection

Factory

Creates

Message



© Peter R. Egli 2017
8/24

Rev. 2.00

JMS – Java Message Service peteregli.net

5. JMS programming model (2/5)
Destination:

A JMS destination is a queue to send to / receive from.

Destinations may be P2P queues or topics (pubsub model).

Topic:

A topic is a PubSub (publish / subscribe) queue (mailbox).

Multiple senders may send to a topic and multiple subscribers may receive the message.

Queue:

A queue is a P2P-queue (Point To Point) where multiple senders send to the queue but only 1 

receiver receives the messages. Once a message is received, it is removed from the queue.

Destination

TopicQueue

Publisher

Publisher

Subscriber

Subscriber

SubscriberTopic

Subscriber

Publisher

Publisher



© Peter R. Egli 2017
9/24

Rev. 2.00

JMS – Java Message Service peteregli.net

5. JMS programming model (3/5)
Connection factory:

Connection factories are used for creating queue and topic connections.

Queue connection:

A queue connection is a connection from JMS a client to a JMS provider.

Connections are created through connection factories.

A connection is either a QueueConnection (P2P model) or a TopicConnection (PubSub model).

Connection

TopicConnectionQueueConnection

ConnectionFactory

TopicConnectionFactoryQueueConnectionFactory



© Peter R. Egli 2017
10/24

Rev. 2.00

JMS – Java Message Service peteregli.net

5. JMS programming model (4/5)
Session:

A session is a context to deliver and consume messages (defined lifecycle with a start and

stop).

Sessions are created from connections (connection is a factory).

Message producer / message consumer:

Message producer and consumer are objects for sending / publishing and receiving messages.

Message producer / consumer are created from sessions.

JMS message types:

JMS defines a couple of standard message types.

Application specific types can be created

through subclassing.

MessageProducer

TopicPublisherQueueSender

MessageConsumer

TopicSubscriberQueueReceiver

Message

MapMessageTextMessage ObjectMessage

BytesMessage StreamMessage



© Peter R. Egli 2017
11/24

Rev. 2.00

JMS – Java Message Service peteregli.net

5. JMS programming model (5/5)
JMS provider:

A JMS provider implements the JMS specification and provides a queue and a queue manager

that receives and forwards messages.

JMS client:

A JMS client is either a producer (sender) or consumer (reciever) of a message.

JNDI provider:

JMS is tightly coupled to JNDI, the Java Naming and Directory Interface, for queue name

lookups.

A JNDI provider is an instance that implements the JNDI interface specification and services

name lookups (returns answers to name lookup requests).

JNDI initial context:

A JNDI initial context is the starting point for name lookups.



© Peter R. Egli 2017
12/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS receive modes
JMS supports both synchronous and asynchronous receive.

Synchronous receive:

The consumer calls the receive() operation. The receive() operation is blocking.

If there is no message in the queue or topic, then the consumer is blocked.

Asynchronous receive:

The consumer registers a message listener. Upon reception of a message, the destination

(message queue or topic) calls the message listener.

Sender JMS Queue Consumer

Message

Sender Queue Consumer

Message
Message

Message
Consumer is blocked until

a message is available



© Peter R. Egli 2017
13/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (1/7)
JMS allows to implement reliable messaging between applications by providing the following

robustness features:

a. Message acknowledgment

b. Persistent delivery mode

c. Message priorities

d. Control of message expiration

e. Durable subscriptions

f. Message transactions

N.B.: These features should not be turned on or used by default as they consume additional 

processing power. The pros and cons of these features need to be carefully weighed against

each other.



© Peter R. Egli 2017
14/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (2/7)
a. Controlling message acknowledgment:

In non-transacted sessions, a message is processed in 3 steps:

1. Client receives the message.

2. Client processes the message.

3. Message is acknowledged using 1 of 3 message acknowledge modes.

a. Auto-acknowledgment (Session.AUTO_ACKNOWLEDGE)

 The message is acknowledged when the client has successfully returned from a call to

receive() or when a message listener has successfully returned.

b. Client acknowledgment (Session.CLIENT_ACKNOWLEDGE)

 The client explicitly acknowledges a message after it has successfully processed it by

calling the message‘s acknowledge() method.

c. Lazy client acknowledgment (Session.DUPS_OK_ACKNOWLEDGE)

 The session lazily acknowledges the delivery of a message. This mode is similar to

auto-acknowledgment, but reduces the overhead on the JMS provider in that it does

not need to prevent duplicate messages. Clients must be prepared to receive

message duplicates in case the JMS provider fails.

Transacted sessions are auto-acknowledgment, i.e. messages are acknowledged upon 

completion (commit) of the transaction.



© Peter R. Egli 2017
15/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (3/7)
b. PERSISTENT delivery mode:

When using persistent messages, JMS stores the message in persistent storage until the

message is successfully delivered.

Failsafe operation (message can not be lost and survive crashes)

Needs more performance

Needs more storage (for the messages)

Message persistence is not always the best solution. It introduces additional processing

overhead and storage requirements for every message.

Usually message loss only occurs in exceptional circumstances (JMS provider crashes).

Depending on the application it may make sense to handle failures in the application and run

JMS in NON_PERSISTENT mode (faster, less processing overhead, optimization of the normal 

case, handle exceptions in special application code).

c. Message priorities:

Message priorities can be used to have urgent messages delivered first. There are 10 priorities

to choose from:

0 = lowest

4 = default

9 = highest



© Peter R. Egli 2017
16/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (4/7)
d. Message expiration:

By default messages never expire.

When using message priorities, there is the danger that messages are never delivered and

queues / topics grow beyond all bounds, thus consuming storage space.

Thus JMS allows to set a lifetime for messages (TTL, Time To Live).

Default lifetime is 0 (= never expires).

e. Durable subscriptions:

Receivers for messages from topics must subscribe to the topic before receiving messages.

The subscriptions are non-persistent, i.e. after each reboot the receiver must subscribe again.

Durable subscriptions allow a receiver to permanently subscribe (= persistent subscription).

Messages M3 and M4

are not received by the subscriber

Messages M2, M4 and M5

are not lost but will be received by the subscriber

as soon as it creates / opens a new session

M1 M2 M3 M4 M5 M6

Subscription
Create Close

Subscription
Create Close

Session
Create Close

Session
Create Close

M1 M2 M3 M4 M5 M6

Subscription
Create Close

Session
Create Close

Session
Create Close

Session
Create Close



© Peter R. Egli 2017
17/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (5/7)
f. Transactions (1/3):

Transactions allow grouping a series of operations together into an atomic unit of work.

If one of the operations in the transaction fails, it can be rolled back (effects of all operations in 

the transaction are undone). 

All produced messages are destroyed and all consumed messages are recovered (unless they

have expired).

If all operations are successful, a transaction commit means that all produced messages are

sent and all consumed messages are acknowledged.

N.B.: Transactions can not be combined with a request-reply mechanism where the production

of the next message depends on the successful reception of a reply. A message in a 

transaction is only sent upon the call of the commit() method, therefore a transaction may only

contain message send or receive operations.

Client 1

Queue

Send Client 2Consumes

Transaction 1 Transaction 2



© Peter R. Egli 2017
18/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (6/7)
f. Transactions (2/3):

A. Transmit commit() and rollback():

Producer JMS Queue

send()
M0

M0

send()
M1 M1

send()
M2

M0

M0

M2 M1

rollback()

send()
M0

send()
M1

send()
M2

commit()

M0

M1

M0

M0

M2 M1

M0M2 M1

M0M2 M1

M0M2 M1

M0M2 M1

M0M2 M1

M0M2 M1

M0M2 M1

Rollback clears all unsent

(uncommitted) messages of the

transaction in the JMS transmit queue.

Commit causes that JMS queue sends 

all unsent messages of the 

transaction.

M0M2 M1



© Peter R. Egli 2017
19/24

Rev. 2.00

JMS – Java Message Service peteregli.net

6. JMS robustness features (7/7)
f. Transactions (3/3):

A. Receive commit() and rollback():

receive()
M0

receive()
M1

receive()
M2

M0M2 M1

rollback()

commit()

Rollback instructs the JMS queue to

ignore all delivered messages (message

delivery restarts at message M0 again).

Commit tells the JMS queue that the

consumer has successfully received

all messages. The JMS queue clears

these messages from the

receive queue.

M0M2 M1

M0M2 M1

M0M2 M1

M0

M1 M0

M2 M1 M0

receive()
M0

receive()
M1

receive()
M2

M0

M1 M0

M2 M1 M0M0M2 M1

M0M2 M1

M0M2 M1

M2 M1 M0

JMS Queue Consumer



© Peter R. Egli 2017
20/24

Rev. 2.00

JMS – Java Message Service peteregli.net

7. Integrating JMS with EJB
JMS can be nicely combined with and integrated into EJB for fully asynchronous interaction

with EJBs.

EJB provides the bean type Message Driven Bean (MDB) that is able to receive and process

messages from a JMS queue.

The MDB may itself process the message or pass it on to other EJBs through

simple method calls.

JEE Server

EJB Container

MDB

Client 1

Message

Send

Queue

Deliver

Message



© Peter R. Egli 2017
21/24

Rev. 2.00

JMS – Java Message Service peteregli.net

8. JNDI (Java Naming and Directory Interface) (1/3)
Like RMI, JMS makes use of the central Java naming service JNDI.

The naming service provides 2 elementary services:

1. Associate names with objects (create a binding)

2. Find / locate objects based on a name (lookup)

Some important JNDI terms:

Association:

An association of a name to an object is called a binding.

Example: Filename (=name) to file (=object) binding.

Context:

A context is a set of name to object bindings.

Example: A file system directory defines a set of filename to file bindings.

Naming System:

A naming system is a connected set of contexts of the same type (same naming convention).

Examples: DNS (Domain Name System) or LDAP (Lightweight Directory Access Protocol) 

systems.

Namespace:

Namespace = set of names in a naming system.

Example: All names in a DNS system.



© Peter R. Egli 2017
22/24

Rev. 2.00

JMS – Java Message Service peteregli.net

8. JNDI (Java Naming and Directory Interface) (2/3)
JNDI architecture:

JNDI defines only an interface for client accesses and service provider plugins.

JNDI defines a common API for naming services, irrespective of the naming system used.

An application that implements the JNDI API is a JNDI provider.

The JNDI SPI (Service Provider Interface) allows to plug-in different naming service providers, 

e.g. for LDAP, DNS or CORBA).

An application could define its own naming service provider by implementing the JNDI SPI.

Source: Oracle

JNDI providers



© Peter R. Egli 2017
23/24

Rev. 2.00

JMS – Java Message Service peteregli.net

8. JNDI (Java Naming and Directory Interface) (3/3)
JNDI directory services:

Besides naming services, JNDI also provides access to directory services through a common

API.

Directories are structured trees of information.

Directory examples:

Microsoft Active Directory

IBM / Lotus Notes

Sun NIS (Network Information Service)

LDAP (Lightweight Directory Access Protocol)

JNDI directory access example:
try {

// Create the initial directory context

DirContext ctx = new InitialDirContext();

// Ask for all attributes of the object

Attributes attrs = ctx.getAttributes("cn=Egli Peter");

// Find the surname ("sn") and print it

System.out.println("sn: " + attrs.get("sn").get());

// Close the context when we're done

ctx.close();

} catch (NamingException e) {

System.err.println("Problem getting attribute: " + e);

}



© Peter R. Egli 2017
24/24

Rev. 2.00

JMS – Java Message Service peteregli.net

JMS 2.0 API

9. JMS 2.0
JMS 2.0, released in April 2013, builds on the API defined by JMS 1.1, but brings a couple of

simplifications, namely:

• Simplified API methods in addition to the legacy JMS 1.1 API:

• New method to extract message body getBody() taking the expected body type as

parameter thus obviating the need to type cast the body.

• New methods to create a session with fewer arguments:

createSession(int sessionMode)
createSession()

• Easier resource configuration, namely the possibility to use the Java EE 7 default

connection factory by applying the @Inject annotation.

This eliminates the need for proprietary JMS provider connection factory configuration.

JMS application

Legacy JMS 1.1 

compliant API


