
© Peter R. Egli 2017
1/16

Rev. 1.80

Enterprise Application Integration peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF ENTERPRISE APPLICATION
INTEGRATION CONCEPTS AND ARCHITECTURES

EAI

© Peter R. Egli 2017
2/16

Rev. 1.80

Enterprise Application Integration peteregli.net

Contents
1. EAI versus SOA versus ESB

2. EAI

3. SOA

4. ESB

5. N-tier enterprise architecture

6. WS-BPEL

7. WOA

© Peter R. Egli 2017
3/16

Rev. 1.80

Enterprise Application Integration peteregli.net

1. EAI versus SOA versus ESB (1/3)
What is EAI (Enterprise Application Integration)?

EAI aims at integrating different enterprise applications. Thus EAI is a goal for enterprise

architectures.

What is SOA:

SOA is an architectural pattern that aims at concentrating common (business) functionality into

distinct services and exposing these on endpoints. Thus SOA is a means or architectural

pattern to achieve EAI.

What is ESB?

ESB is an infrastructure component to facilitate SOA (ESB = messaging backbone) and EAI.

EAI

SOA

Architectural

pattern for

ESB

Infrastructure

component for

© Peter R. Egli 2017
4/16

Rev. 1.80

Enterprise Application Integration peteregli.net

1. EAI versus SOA versus ESB (2/3)
Traditional EAI architectures before SOA:

ERP

Client A

CRM

Client B

SCM

Client C

PDM

Client D

Other

Client E

ESB (mediation middleware)

Security

Transaction

Transformation

No direct

access between

client and

server allowed

No direct access between

Servers allowed

CORBA DCOM RMI HTTP xyz

Integration of applications (common middleware infrastructure through ESB).

Inefficient for compound services (services calling other services have to pass through the

central EAI middleware (ESB) with security checks and transformations for each call).

Limited reuse of services due to hidden endpoints (classical C/S architecture).

ERP: Enterprise Resource Planning

CRM: Customer Relationship Management

SCM: Supply Chain Management

PDM: Product Data Management

CORBA: Common Object Request Broker Architecture

DCOM: Distributed COM

RMI: Remote Method Invocation

© Peter R. Egli 2017
5/16

Rev. 1.80

Enterprise Application Integration peteregli.net

1. EAI versus SOA versus ESB (3/3)
The solution for EAI with SOA:

• Common functionality is exposed as services.

• Endpoints (services) are exposed to be freely called by anyone.

• Services may call other services, clients may call services ("liberation" of endpoints).

• Services form a service grid with exposed application service endpoints and centralized

infrastructure service endpoints.

S0

ESB

S1 S2 S3

Trans-

action

Security

Logging

© Peter R. Egli 2017
6/16

Rev. 1.80

Enterprise Application Integration peteregli.net

2. EAI (1/3)
What is EAI?

EAI is a business need or goal to integrate and couple diverse applications in an enterprise /

organization. The benefits of EAI are:

 Share information between applications (basically connect the different DBs) and keep data

consistent.

 Potentially reduce the technology landscape, reduce heterogeneity (standard interfaces of

services mandate the use of standards, applications have less freedom to choose from

different DBs, OSs, middlewares etc.).

 Faster and easier deployment of a new / updated application (interfaces for the integration

are defined, middleware technologies are in place).

Traditional IT landscape: EAI architecture:

n*(n-1)/2 application interface connections. Central communication backbone.

with standard interfaces.

Messaging backbone

© Peter R. Egli 2017
7/16

Rev. 1.80

Enterprise Application Integration peteregli.net

2. EAI (2/3)
Typical EAI topologies:

1. Hub and spoke:

 EAI system is at the center (hub),

interaction with applications

via adaptors (=spokes).

2. Bus:

 EAI system is a bus.

 Distributed message-oriented communication.

App.

App.

App.

App.

Hub

(msg.

Broker)

App.

Adaptor

App.

Adaptor

Messaging backbone

App.

Adaptor

App.

Adaptor

Adaptor

App.

Adaptor Adaptor

App. App.

© Peter R. Egli 2017
8/16

Rev. 1.80

Enterprise Application Integration peteregli.net

2. EAI (3/3)
EAI building blocks:

EAI can be accomplished in different ways. Most did not prove scalable (e.g. integration at DB

level). Use of a centralized broker emerged as the best solution to the integration problem

(scalability). This best practice has the following building blocks:

1. Centralized broker:

 Handles security, access and communication.

 ESB

2. Data model:

 Common data model based on a standard data structure. XML has become the de-facto

standard.

3. Adaptor / connector:

 Adaptors / connectors connect applications to the central broker.

4. System model:

 Defines the interface including API and data flow to a component that connects to the central

broker. Allows other applications to interact with this component in a standardized way.

© Peter R. Egli 2017
9/16

Rev. 1.80

Enterprise Application Integration peteregli.net

3. SOA (1/3)
SOA aims to extract common (service) functionality from different applications and expose it

on a service endpoint.

In the basic SOA pattern, service consumer, provider and registry are separated into different

entities.

The service registry helps decoupling service consumer and provider so that the consumer

does not need to know the location of the provider.

The service registry is an optional entity. In smaller deployments running a service registry may

be 'overkill'.

Service

registry

Service

consumer

Service

provider

1. Register

(publish)
2. Find

3. Bind

© Peter R. Egli 2017
10/16

Rev. 1.80

Enterprise Application Integration peteregli.net

3. SOA (2/3)
Services can be exposed at different levels / granularity:

Finding the right granularity is crucial for a successful SOA.

A layering as follows may help in defining / decomposing the service landscape.

Enterprise resources

Component services

Business services

Workflow

services

Applications

Users

G
ra

n
u

la
ri

ty

Simple atomic action on a resource; action does

not depend on any other service / component.

Example: Simple access to a DB table.

Orchestrates component services into a single business

level process.

Example: Submit an expense report.

Conversational workflow services have a state.

Example: Expense processing service.

Standard: WS-BPEL

Applications invoke workflow services.

© Peter R. Egli 2017
11/16

Rev. 1.80

Enterprise Application Integration peteregli.net

3. SOA (3/3)
Standards are crucial for SOAs.

These standards may be layered as follows:

Network protocol (HTTP, SMTP)

XML (infoset, namespace, schema)

Service description (WSDL, WADL)

Service invocation, messaging (SOAP, WS-I / WS-*)

Service discovery (UDDI, JAXR)

Service orchestration (WS-BPEL)

Security Transactions Management

Infrastructure

standards

Semantic

standards
ebXML, XML/EDIFACT, HL7 CDA, SWIFT etc.

ebXML: Electronic business XML

XML/EDIFACT: XML for Electronic Data Interchange for Administration, Commerce and Transport

HL7 CDA: Health Level 7 XML format

WS-BPEL: WS Business Process Engineering Language

SWIFT: Societiy for Worldwide Interbank Financial Telecommunication

Supporting

standards

© Peter R. Egli 2017
12/16

Rev. 1.80

Enterprise Application Integration peteregli.net

4. ESB
Enterprise Service Bus is an infrastructure to facilitate SOA.

ESB is basically a messaging backbone / broker which provides the following functions:

Examples:

Mule

IBM WebSphere ESB

Microsoft BizTalk server

Category Functions

Invocation

Support for synchronous and asynchronous transport protocols, service mapping (locating and

binding).

Routing

Addressability, static/deterministic routing, content-based routing, rules-based routing, policy-

based routing.

Mediation Adapters, protocol transformation, service mapping.

Messaging Message-processing, message transformation and message enhancement.

Process choreography Implementation of complex business processes.

Service orchestration Coordination of multiple implementation services exposed as a single, aggregate service.

Complex event

processing Event-interpretation, correlation, pattern-matching.

Other quality of service Security (encryption and signing), reliable delivery, transaction management.

Management Monitoring, audit, logging, metering, admin console, BAM.

Source: http://en.wikipedia.org/wiki/Enterprise_service_bus

© Peter R. Egli 2017
13/16

Rev. 1.80

Enterprise Application Integration peteregli.net

5. N-tier enterprise architecture
"Best practice" for "horizontal" decomposition of an application: 3-tier.

 Separation of concerns (user interface, business logic and data handling) improves

maintainability and extensibility.

Web browsers

HTML, Javascript

GUI clients

C++, C#, Java

Web

Server

Middleware

Server

Databases

Legacy Systems

Presentation tier:

User interfaces

Middle tier:

Business logic

Data tier:

Data sources / sinks

© Peter R. Egli 2017
14/16

Rev. 1.80

Enterprise Application Integration peteregli.net

6. WS-BPEL (1/2)
What is WS-BPEL (Web Services Business Process Execution Language)?

WS-BPEL is a language to define business processes based on web services.

BPEL binds (web) services together to form larger complex business services.

Thus BPEL is kind of a business programming language.

BPEL provides:

a. Control flow (branch, loop, parallel).

b. Asynchronous correlation.

c. Transaction support.

For writing business programs, the following components are necessary:

1. Programming logic (provided by BPEL).

2. Data types (provided by the XSD of a web service).

3. Input / output (provided by WSDL that defines the web service messages).

WS-BPEL versus BPEL4WS:

BPEL4WS: Original standards by BEA, IBM, MS, SAP and Siebel.

WS-BPEL: Successor to BPEL4WS defined by OASIS (name to comply with WS-* scheme).

WS-BPEL and BPMN (Business Process Modelling Notation):

BPMN defines the (graphical) notation for business process elements while WS-BPEL defines

an XML-based business process description language.

© Peter R. Egli 2017
15/16

Rev. 1.80

Enterprise Application Integration peteregli.net

6. WS-BPEL (2/2)
BPEL hello world example:
<?xml version="1.0" encoding="UTF-8"?>

<process

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:print="http://www.eclipse.org/tptp/choreography/2004/engine/Print"

<!--Hello World - my first ever BPEL program -->

<import importType="http://schemas.xmlsoap.org/wsdl/"

location="../../test_bucket/service_libraries/tptp_EnginePrinterPort.wsdl"

namespace="http://www.eclipse.org/tptp/choreography/2004/engine/Print" />

<partnerLinks>

<partnerLink name="printService" partnerLinkType="print:printLink" partnerRole="printService"/>

</partnerLinks>

<variables>

<variable name="hello_world" messageType="print:PrintMessage" />

</variables>

<assign>

<copy>

<from><literal>Hello World</literal></from>

<to>.value</to>

</copy>

</assign>

<invoke partnerLink="printService" operation="print" inputVariable="hello_world" />

</process>

Source: http://www.eclipse.org/tptp/platform/documents/design/choreography_html/tutorials/wsbpel_tut.html

http://www.eclipse.org/tptp/platform/documents/design/choreography_html/tutorials/wsbpel_tut.html

© Peter R. Egli 2017
16/16

Rev. 1.80

Enterprise Application Integration peteregli.net

7. WOA
Web Oriented Architecture is a concept that extends or simplifies SOA through the use of REST

and POX (Plain Old XML).

WOA / REST is simply another (simpler?!) approach to SOA.

POX: Plain Old XML (like POJO, but with XML)

JSON: Javascript Object Notation (more compact alternative to XML)

BPEL: Business Process Execution Language

Complexity

F
e

a
tu

re
s

 /
 R

ic
h

n
e
s

s

SOA

WOA

Source: http://www.zdnet.com/blog/hinchcliffe/the-soa-with-reach-web-oriented-architecture/27

WSDL

REST

BPEL

JMS

RMI

SOAP

WS-*

JSON

HTTP

http://www.zdnet.com/blog/hinchcliffe/the-soa-with-reach-web-oriented-architecture/27

