
© Peter R. Egli 2017
1/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

Peter R. Egli
peteregli.net

INTRODUCTION TO ENTERPRISE JAVA BEANS,
JAVA'S SERVER SIDE COMPONENT TECHNOLOGY

EJB
ENTERPRISE JAVA BEANS



© Peter R. Egli 2017
2/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

Contents
1. What is a bean?

2. Why EJB?

3. Evolution of EJB

4. Bean interfaces

5. EJB bean types

6. Lifecycle of EJBs

7. Session facade pattern for uniform bean access

8. Bean deployment

9. EJB container

10. Comparison of EJB with other DOT technology like CORBA

11. When to use EJB



© Peter R. Egli 2017
3/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

1. What is a bean?
 Beans are business logic components that implement a standard interface through which

the bean is hooked into the bean container (= runtime object for bean).

 A Java class implementing one of the standard bean interfaces is a bean.

 Beans can be accessed remotely, usually from a client tier.

Bean
Bean

container

Snapshots from OpenEJB libs in Eclipse package explorer



© Peter R. Egli 2017
4/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

2. Why EJB?
Common concerns in different applications lead to re-implementing the same functionality for

business logic components.

Examples of common functionality:

- Persistence

- Transactions

- Security

- Runtime and lifecycle management (create, start, stop and delete component)

EJB is a framework that provides the following services to applications:

- Persistence

- Transaction processing

- Concurrency control (each client accesses its own bean instance)

- Events using JMS (Java Messaging Service)

- Naming and directory services via JNDI (Java Naming and Directory Interface)

- Security using JAAS (Java Authentication and Authorization Service)

- Deployment of software components to a server host

- Remote procedure calls via RMI (RMI over IIOP)

- Exposing business functionality via web services

Business

logic

Front end

(protocol, GUI)

Backend

(DB)



© Peter R. Egli 2017
5/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

3. Evolution of EJB
EJB 1.0 (1998):

Framework for distributed applications, backed by industry giants IBM and Sun.

Complexity (difficult to write beans due to high number of interfaces, exception etc. to be used).

Low performance due to use of CORBA as the only available remoting technology.

EJB 2.0 (2001):

Performance improvements due to the introduction of local and remote interfaces (local applications use faster local

interface).

Introduction of Message Driven Beans (connect EJB with JMS).

Complexity (specification: 646 pages).

Severely limited SQL dialect for entity beans (EJBQL).

Client
CORBA

DBBean

Container



© Peter R. Egli 2017
6/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

3. Evolution of EJB
EJB 3.0 (2006):

Home interface eliminated.

Deployment descriptor optional, replaced by Java annotations.

Implementation of business interfaces as POJI (Plain Old Java Interface) with Java annotations.

Implementation of beans as POJOs (Plain Old Java Object) with Java annotations.

Entity beans replaced by POJOs that use JPA-annotations (Java Persistence API) @Resource.

JNDI-lookup of home interface replaced by dependency injection via annotations (@Inject).

Beans no longer need to implement callback methods ejbCreate() and ejbActivate(); instead they may use annotations.

EJB 3.1 (since Java 6):

Support for singletons (@Singleton annotation)

Asynchronous invocations (@Asynchronous annotation)

Optional business interface



© Peter R. Egli 2017
7/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

4. Bean interfaces (1/5)
Access to beans is provided through 2 interfaces (in EJB versions EJB 1.x and EJB 2.x):

Component interface:

The component interface (also called remote interface) provides the business logic methods

(methods that are specific to a bean).

The component interface methods are instance (object) methods.

Home interface:

The home interface specifies bean lifecycle methods (creation and deletion of beans). These 

methods are static (class) methods.
Business logic methods

Bean lifecycle methods and

finder methods (for entity beans only)

BankAccountEJB

Component Interface

deposit()

credit()

Home Interface

create()

findByPrimaryKey()

Remote Client



© Peter R. Egli 2017
8/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

4. Bean interfaces (2/5)
Both component and home interface are Java RMI interfaces.

This allows remote access to a Java class that implements these interfaces (bean).

But: A bean can be accessed remotely (client is in a different VM) and locally (client is in the

same VM as the bean container), see page 8.

UML view:

BankAccCI

Comp. interface

BankAccountEJB

BankAccHI

Home interface

EJBHome

Remote

EJBObject

Java RMI remote interface.

EJB component and home interfaces.

User defined component and 

home interfaces.



© Peter R. Egli 2017
9/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

Bean Container

4. Bean interfaces (3/5)
Typical access of a client to a bean (EJB 1.x and EJB 2.x):

1. Lookup of the home interface through JNDI (Java Naming and Directory Interface).

2. The Client calls the create() method on the home object.

3. The home object creates an instance of the bean and calls ejbCreate() with the same 

signature as the client. The container returns a reference to the created bean instance.

4. The client calls a business method on the created bean.

5. When finished the client destroys the bean by calling remove() on the home interface.

JNDI

Client

Comp.

Home

Bean

instance

1
4 4

2 35



© Peter R. Egli 2017
10/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

JVM

Bean container

4. Bean interfaces (4/5)
Local versus remote bean access (1/2):

EJB 2.0 introduced local and remote access interfaces.

Clients can run in a different JVM (= remote client) or in the same JVM as the bean (= local

client).

Arguments are passed-by-value in calls made by the remote client and passed-by-reference

in calls made by the local client.

Bean
Remote

Client

Remote

Component

Interface

Remote

Home

Interface

Local

Component

Interface

Local

Home

Interface

Local

Client

Local client viewRemote client view



© Peter R. Egli 2017
11/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

4. Bean interfaces (5/5)
Local versus remote bean access (2/2):

Remote access:

 Loose coupling between client and server (=bean).

 Call-by-value arguments in calls (copy-semantics).

 Potentially slow (network latency, network stack processing, parameter marshalling etc.).

 Remote interface = RMI interface.

 Location transparency (client does not know where server bean resides).

 Recommended usage: Coarse-grain access client to server (only occasional accesses).

Local access:

 Tight coupling between client and server (=bean).

 Call-by-reference arguments (no copying).

 Plain Java object interface (direct method calls).

 No location transparency.

 Recommended usage: May be used when client and bean have a tight interaction.



© Peter R. Egli 2017
12/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

5. EJB bean types (1/3)
5.1. Session bean (EJB 1.x, 2.x and 3.x):

A session bean contains and represents some business logic.

a. Stateless session bean:

 The instance variables of the bean are guaranteed to be maintained only for the duration of

the client method invocation.

 Stateless session beans provide better scalability (beans may support multiple clients).

b. Stateful session bean:

 The bean maintains a conversational state throughout the session with the client, until the

session terminates.

Bean container

Client

S-BeanClient

Client

Bean container

Client

S-BeanClient

Client

S-Bean

S-Bean



© Peter R. Egli 2017
13/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

5. EJB bean types (2/3)
5.2. Entity bean (EJB1.x, EJB 2.x):

An entity bean represents persistent data maintained in a database (DB).

Typically an entity bean represents a row (=entry) in a DB table.

An entity bean is identified by its primary key.

Types of persistence:

a. BMP – Bean Managed Persistence:

 The bean manages persistence on its own (bean developer must write the DB access calls).

b. CMP – Container Managed Persistence:

 The persistence is managed by the bean container, i.e. the container generates the DB 

access calls.
Bean container

E-BeanClient

DB



© Peter R. Egli 2017
14/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

5. EJB bean types (3/3)
5.3. MDB - Message Driven Bean (EJB 2.x, EJB 3.x):

A message driven bean acts as a listener on JMS message queues (Java Message Service).

Clients do not have direct access to MDBs through home or component interfaces.

MDBs are similar to stateless session beans in that they may receive messages from

multiple clients.

MDBs allow asynchronous interaction between client and server which reduces the coupling

between them.

MDBs may be used as an asynchronous interface to a server application. The MDB receives

messages and converts these to method calls on session and entity beans in the bean

container.

JMS queue

Bean container

MDB

Client

S-Bean

E-Bean



© Peter R. Egli 2017
15/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

6. Lifecycle of EJBs (1/4)
6.1. Stateless session bean (EJB 1.x, 2.x, 3.x):

Stateless session beans have a very simple lifecycle.

They either do not exist or are ready for receiving method invocations.

Lifecycle steps:

1. The client obtains a reference to a stateless session bean (JNDI lookup).

2. The EJB container performs dependency injection (evaluation of @EJB, @Resource, @Inject

annotations if such are provided). The bean goes into the state Ready.

3. The EJB container invokes methods annotated with @PostConstruct.

4. The client invokes business methods on the bean.

5. When the client reference goes out of scope, the lifecycle of the bean ends. The EJB 

container calls methods annotated with @PreDestroy and then disposes of the bean.

1. Create bean

2. Dependency injection (if any)

3. PostConstruct callbacks (if any)

Does not

exist
Ready

5. PreDestroy callbacks (if any)



© Peter R. Egli 2017
16/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

6. Lifecycle of EJBs (2/4)
6.2. Statefull session bean (EJB 1.x, 2.x, 3.x):

In addition to the lifecycle states of stateless beans, stateful beans have the state Passive.

The EJB container may move (evict) unused beans to secondary storage, e.g. disk for saving

resources (RAM). When a client invokes a method on a passivated object, the container

resurrects a bean of the requested type, loads it with state data that it had before passivation

(state data is stored separately on disk) and then performs the method invocation.

Lifecycle steps:

The bean creation process (steps 1. through 3.) is the same as for stateless session beans.

4. The client invokes business methods on the bean.

5. The server may, when it detects that the bean is not invoked for some time, passivate the

bean. Before passivating the bean, the container calls the @PrePassivate callback.

6. When a new client invocation arrives, the EJB container retrieves a bean of the requested

type, fills it with state data the bean had before passivation, calls the @PostActive annotation

methods and then the called business method.

7. The actions for bean destruction are the same as for stateless beans.

1. Create bean

2. Dependency injection (if any)

3. PostConstruct callbacks (if any)

Does not

exist
Ready

7. PreDestroy callbacks (if any)

Passive

5. PrePassivate callbacks

6. PostActivate callbacks



© Peter R. Egli 2017
17/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

6. Lifecycle of EJBs (3/4)
6.3. Entity bean (EJB 1.x and 2.x):

Entity beans are moved between Pooled and Ready states, either by client or container request.

Lifecycle steps:

1. The EJB container creates the instance, calls setEntityContext() (set the entity context that

may be used in transactions) and moves the bean to the bean pool. At this stage the bean is not 

associated with any particular object identity.

There exist 2 paths for moving from the Pooled state to the Ready state:

2.a. The client calls the create() method which causes the container to move the bean to the

Ready state. Before doing so, the container calls the ejbCreate() and ejbPostCreate() methods.

2.b. The container itself calls the ejbActivate() method and moves the bean to the Ready state.

Likewise there are 2 paths to move a bean from the Ready to the Pooled state:

3.a. The client calls the remove() method, the container then calls the ejbRemove() method.

3.b. The container calls the ejbPassivate() method.

4. Before destroying the bean, the container

calls unsetEntityContext().

1. setEntityContext()

Does not

exist
Pooled

4. unsetEntityContext()

Ready

2.b. ejbActivate

3.a. remove

ejbRemove

2.a. create

ejbCreate

ejbPostCreate

3.b. ejbPassivate



© Peter R. Egli 2017
18/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

6. Lifecycle of EJBs (4/4)
6.4. Message driven beans (EJB 2.x and EJB 3.x):

The lifecycle of MDBs is similar to the lifecycle of stateless session beans.

Lifecycle steps:

1. The container creates a pool of MDBs.

2. The container injects dependencies into the bean. 

3. The container calls methods annotated with @PostConstruct and activates the bean.

4. Upon message reception, the onMessage() method is called in which the bean processes the

message.

5. Before the bean is destroyed, the container calls any @PreDestroy callback methods.

Does not

exist
Ready

4. onMessage

1. Create bean

2. Dependency injection (if any)

3. PostConstruct callbacks (if any)

5. PreDestroy callbacks (if any)



© Peter R. Egli 2017
19/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

7. Session facade pattern for uniform bean access
Common problems with beans:

 Tight coupling between client objects and beans (direct dependency between clients and 

business objects).

 Too many method invocations between client and server (network performance problems).

Proposed solution by Sun:

 Use of a session bean as a facade that hides complexity from the client and manages

business and data objects.

Remote

Client

Session Bean

Session

Facade

EntityBean

SessionBean

Busines

object (POJO)

The facade provides a uniform 

interface to the client and hides the 

access to the business

objects (entity and session beans).

The facade session bean provides

high-level methods that dispatch

individual method invocations

to the attached beans.



© Peter R. Egli 2017
20/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

8. Bean deployment
In EJB 1.x and EJB 2.x, a deployment descriptor (XML-file) was required to inform the bean

container (JEE application server) about the classes implementing the home and component

(remote) interfaces, the type of bean etc.

In EJB 3.0, most of the XML elements were replaced by annotations.

<?xml version="1.0" encoding="UTF-8"?>

<application-client version="5" 

xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/application-

client_5.xsd">

<description>My super application</description>

<display-name>MrBean</display-name>

<enterprise-beans>

<session>

<ejb-name>MySuperBean</ejb-name>

<home>com.indigoo.wsmw.ejb.MySuperBeanHomeInterface</home>

<remote>com.indigoo.wsmw.ejb.MySuperBeanInterface</remote>

<ejb-class>com.indigoo.wsmw.ejb.MySuperBean</ejb-class>

<session-type>Stateless</session-type>

</session>

</enterprise-beans>

</application-client>



© Peter R. Egli 2017
21/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

JEE Server

Client Machine

Browser

Application

Client

Container

Application

Client

Web Container

Servlet
JSP 

Page

EJB Container

EJB

Bean

EJB

Bean

DB

9. EJB container
The EJB container is the place where Java beans „live“ (are hosted).

EJB containers are part of the J2EE (application) server which in turn runs in a JVM.

EJB daemon which

hosts and services EJB

beans.

Java application server

(Examples: Glassfish, JBoss, 

IBM Websphere, Oracle Weblogic,

Apache Geronimo etc.).

JVM



© Peter R. Egli 2017
22/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

10. Comparison of EJB with other DOT technology like CORBA
EJB and CORBA are similar in many ways. There are some notable differences:

Feature CORBA EJB

Middleware type CORBA = explicit middleware:

Client accesses directly the CORBA API

EJB = implicit middleware:

Client is shielded from the specifics of the

EJB-API

Language support CORBA = language-neutral (there are

various IDL-language-mappings)

EJB = Java only

Server-side integration CORBA-POA-model is more flexible

CORBA leaves it open how to integrate 

the server-side objects

EJBs are tightly integrated into the EJB-

container

Interface specification IDL (language-neutral syntax and 

semantics)

Interface specification = Java interface

Configuration CORBA does not provide interfaces or 

concepts for configuration

EJB 1 and 2:

EJB configuration is placed into a 

deployment descriptor (XML file)

EJB 3:

Configuration through annotations

CORBA: Common Object Request Broker Architecture

DOT: Distributed Object Technology

IDL: Interface Description Language 

POA: Portable Object Adaptor



© Peter R. Egli 2017
23/23

Rev. 2.00

EJB – Enterprise Java Beans peteregli.net

11. When to use EJB
EJB may be overkill in many applications and alternatives (namely Spring) may often be better

suited to fulfill a certain task. The following table compares EJB and Spring:

Feature EJB Spring Framework

Multi-tiered application

(distributed application, 

remoting)

Yes (client and server tier, separation of

client and business logic is one of the

main goals of EJB).

Container-managed remote method

calls.

Remoting through RMI, HTTPInvoker, JAX-RPC 

web services, JMS.

Standard platform, 

vendor independence

Yes (defined by JCP, supported by all 

major JEE vendors)

No (vendor = SpringSource)

Application server JEE application server needed. Spring comes with its own (lightweight) object

container.

Dependency injection Yes (EJB 3.0), but less powerful than

Spring (only JNDI-objects, not POJOs).

Yes (even between POJOs).

Distributed transactions Yes (must use JTA). Yes (JTA and other transaction managers

possible).

Persistence / ORM Programmatic bean-managed

persistence.

Vendor specific ORM.

Integration with different persistence frameworks

(Hibernate etc.)

JEE: Java Enterprise Edition

JCP: Java Community Process

JMS: Java Messaging Service

JTA: Java Transaction API

ORM: Object Relational Mapper

POJO: Plain Old Java Object


