
© Peter R. Egli 2017
1/27

Rev. 2.00

CORBA peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF CORBA, OMG'S OBJECT
TECHNOLOGY FOR DISTRIBUTED APPLICATIONS

CORBA
COMMON OBJECT

REQUEST BROKER ARCHITECTURE

© Peter R. Egli 2017
2/27

Rev. 2.00

CORBA peteregli.net

Contents
1. What is CORBA?

2. CORBA Elements

3. The CORBA IDL

4. Server Programming Models - How to Implement the Server

5. COS – CORBA Object Services

6. DII – Dynamic Invocation Interface

7. ORB - Object Request Broker

8. Pros and cons of CORBA

© Peter R. Egli 2017
3/27

Rev. 2.00

CORBA peteregli.net

1. What is CORBA?
CORBA: Common Object Request Broker Architecture.

CORBA is a distributed object technology.

 Objects call operations (methods) on other objects, either locally or on a remote objects.

 CORBA provides interoperability between vendors and languages (e.g. objects developed in

one programming language like C++ may call operations on objects developed in another

language like Java).

ORB 1

Client

Object

Stub

Server

Object

Skel.

ORB 2

Client

Object

Stub

Server

Object

Skel.

Inter-ORB communication uses the

GIOP (General Inter-ORB Protocol)

© Peter R. Egli 2017
4/27

Rev. 2.00

CORBA peteregli.net

2. CORBA Elements
ORB:

The Object Request Broker dispatches operation calls to the right server object.

Stub:

The stub is a component that connects the client object to the ORB.

Skeleton:

The skeleton is a server-side component that, like the client stub, connects the server object to

the ORB.

GIOP / IIOP:

GIOP: General Inter ORB Protocol.

IIOP: Internet Inter ORB Protocol.

Communication between ORBs uses a standard protocol. GIOP is a general interoperability

protocol while IIOP, a variant of GIOP, is used in TCP/IP based networks.

© Peter R. Egli 2017
5/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (1/11)
IDL (Interface Description Language) defines an object interface in an abstract and

implementation neutral way.

The IDL of an object represents an interface contract. This separates interface definition from

the interface implementation.

The IDL compiler generates stub / skeleton code for specific languages (=language mapping or

language binding).

Language mappings exist for a range of languages (Java, C++, Python, Ruby, COBOL etc.).

E.g. Java:
idlj.exe -fall -td ../HelloServer/src ../../Hello.idl

E.g. omniORB:
omniidl.exe -C. -bcxx ..\..\Hello.idl

IDL compiler

(e.g. idlj.exe)

Hello.idl Code
Code
Stub /

Skeleton

Code

Language and

platform independent

interface description Target language / platform

© Peter R. Egli 2017
6/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (2/11)
The syntax of IDL inherited much from the C/C++ programming language.

Namespace:
Keyword module defines a namespace or scope (scoping for avoiding naming conflicts).

module can be omitted (the interface then is in the global IDL namespace).

Example:
//IDL

module HelloApp

{

interface Hello

{

string sayHello();

oneway void shutdown();

};

};

The fully qualified name of the interface is HelloApp::Hello (note the scoping operator ‚::‘).

Reopening modules:

Modules can appear multiple times in IDL-files.
//IDL

module HelloApp

{

interface Hello {...};

...

interface Hello {...};

};

© Peter R. Egli 2017
7/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (3/11)
Main elements of an interface:

Operations:

 Similar to operations (methods) in classes.

 Arguments have classifiers (in, inout, out) for specifying the direction of the

argument passing.

Attributes:

 Similar to attributes in classes.

 The IDL compiler generates setter and getter functions for each attribute except when

it is declared readonly.

Example:
//IDL

module BankSimple {

typedef float CashAmount; //type definition

interface Account; //forward declaration

interface bank {...};

interface Account {

readonly attribute string name;

readonly attribute CashAmount balance;

void deposit (in CashAmount amount);

void withdraw (in CashAmount amount);

};

};

© Peter R. Egli 2017
8/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (4/11)
IDL exceptions:

There are 2 types of exceptions:

a. System exceptions defined by CORBA (may be thrown at any time).

b. User defined exceptions (operations may throw multiple exceptions).

Example:
//IDL

module BankSimple {

typedef float CashAmount; //type definition required so it can be used as operation argument

interface Account {

exception InsufficientFunds {

string reason;

};

exception AccountBlocked {

string reason;

};

void withdraw(in CashAmount amount)

raises(InsufficientFunds, AccountBlocked);

...

};

};

IDL includes:
The #include statement allows importing other IDL files:
// IDL

#include <BaseInterface.idl>

...

© Peter R. Egli 2017
9/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (5/11)
IDL operation invocation semantics:

IDL supports 2 operation invocation semantics:

A. Synchronous:

In synchronous operation calls, the caller is blocked until the operation terminates and has

returned.

Synchronous operations correspond to operation calls on objects.

B. Oneway:

In oneway operation invocations, the client is not blocked during the invocation but may

continue with other work (asynchronous operation).

E.g. oneway operations may be used to send logging information to a log server where it is not

necessary to wait for the operation to complete.

N.B.: In oneway operations, there is no feedback to the client if the operation succeeded or

failed.
//IDL

module BankSimple

{ ...

interface Account {

oneway void notice(in string text);

...

};

};

© Peter R. Egli 2017
10/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (6/11)
Passing context information in operations:

Contexts allow mapping a set of identifiers to a set of string values. In the code that the IDL

compiler generates, the context is passed like an ordinary argument.
//IDL

module BankSimple

{

...

interface Account {

void deposit(in CashAmount amount)

context (“sys_time”, “sys_location”);

...

};

};

Generated code:
public interface AccountOperations

{

void withdraw (float amount, org.omg.CORBA.Context $context);

}

© Peter R. Egli 2017
11/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (7/11)
IDL interface inheritance:

Interfaces may inherit all operations and attributes of super-interfaces.

Multiple inheritance is possible.
// IDL

module BankSimple {

interface Account {...};

interface CheckingAccount : Account {...};

interface SavingsAccount : Account {...};

interface PremiumAccount :

CheckingAccount, SavingsAccount {

...

};

};

IDL Object interface type:

Object is the „mother of all interfaces“ (user defined interfaces implicitly inherit from

Object).

Example interface Object operations:
Object::_create_request(...): Creation of requests using DII (Dynamic Invocation Interface).

Object::_duplicate(...): Duplicate object references.

Object::_narrow(...): Convert an object to a more specific type (kind of a dynamic typecast).

Object::_is_a(...): Check whether an object may be narrowed to the specified type.

© Peter R. Egli 2017
12/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (8/11)
IDL forward declarations:

Similar to C++, IDL allows forward declarations.

Forward declarations are required when interfaces reference each other.
// IDL

module BankSimple {

interface Account; // Forward declaration of Account

interface Bank {

Account create_account (in string name);

Account find_account (in string name);

};

// Full definition of Account.

interface Account {

...

};

Constants in IDL:

Like other languages, IDL allows defining constants.

module BankSimple {

interface Bank {

const long MaxAccounts = 10000;

const float Factor = (10.0 - 6.5) * 3.91;

...

};

};

© Peter R. Egli 2017
13/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (9/11)
Standard IDL data types (1/3):

A. Basic types:

IDL defines the following basic types.
short, unsigned short, long, float, double, char, boolean, octet, any (=arbitrary IDL type)

B. Complex types:

IDL complex types are enumerations and structure types.
enum Currency {pound, dollar, yen, franc};

struct CustomerDetails {

string name;

short age;

};

C. Union:

Unions allow defining the type of a type member based on an argument.
// IDL

struct DateStructure {

short Day;

short Month;

short Year;

};

union Date switch (short) {

case 1: string stringFormat;

case 2: long digitalFormat; //if argument short=1

default: DateStructure structFormat; //defines the default format

};

© Peter R. Egli 2017
14/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (10/11)
Standard IDL data types (2/3):

D. String:

IDL supports bounded and unbounded strings.
//IDL

interface Account {

// A bounded string with maximum length 10.

attribute string<10> sortCode;

// An unbounded string.

readonly attribute string name;

};

E. Sequence:

A sequence is similar to a one-dimensional array. Again there are bounded and unbounded

sequences. A sequence must be defined as a type before being used as an argument in an

operation or attribute.
// IDL

module BankSimple {

struct LimitedAccounts {

string bankSortCode<10>;

// Maximum length of sequence is 50.

sequence<Account, 50> accounts;

};

struct UnlimitedAccounts {

string bankSortCode<10>;

// No maximum length of sequence.

sequence<Account> accounts;

};

};

// IDL

module BankSimple {

typedef sequence<string> CustomerSeq;

interface Account {

void getCustomerList(out CustomerSeq names);

...

};

};

© Peter R. Egli 2017
15/27

Rev. 2.00

CORBA peteregli.net

3. The CORBA IDL (11/11)
Standard IDL data types (3/3):

F. Array:

Arrays are always fixed-size.

Arrays may be multi-dimensional.

Like sequences, arrays must be defined as typedef before being used as attributes or operation

arguments.
//IDL

struct CustomerAccountInfo {

string name;

Account accounts[3];

};

typedef Account AccountArray[100];

interface Bank {

readonly attribute AccountArray accounts;

};

G. Fixed:

Fixed point numbers are represented as a tuple {digit, scale}. Digit is the length of the number,

while scale defines the position of the decimal point.
module BankSimple {

typedef fixed<10,4> ExchangeRate; //range: (+/-)999999.9999

struct Rates {

ExchangeRate USRate;

ExchangeRate UKRate;

ExchangeRate IRRate;

};

};

© Peter R. Egli 2017
16/27

Rev. 2.00

CORBA peteregli.net

4. Server Programming Models - How to Implement the Server (1/5)
Over time, different ways of implementation emerged for the server side of the interface defined

in the IDL.

A. POA model versus ImplBase model (deprecated):

POA (Portable Object Adaptor) provides a standard interface for object implementations

(portability of servants across different vendors).

POA allows 1 servant instance to serve multiple object identities (POA dispatches request

to the right servant object).

ImplBase is less portable since it does not use a standard interface. The ImplBase model is

now deprecated in favor of POA.

Client ORB POA
Incoming request

Server application

Servants

Client ORB
Incoming request

Server application

Servants

© Peter R. Egli 2017
17/27

Rev. 2.00

CORBA peteregli.net

4. Server Programming Models - How to Implement the Server (2/5)

B. Inheritance versus delegation (tie):

In the inheritance model, a servant object implements either the ImplBase (deprecated) or POA

base class.

In the delegation model, the IDL interface is implemented with 2 classes:

a. IDL-generated tie-class that dispatches requests to a delegate

b. User-defined implementation class (delegate)

Combining POA/ImplBase with Inheritance/Delegation:

POA and ImplBase can be combined with inheritance and delegation.

Client ORB POA tie
Incoming request

Server application

Servants

Delegation

POA ImplBase

Inheritance POA-Inheritance Model ImplBase – Inheritance Model (deprecated)

Tie POA – Tie Model ImplBase – Tie Model (deprecated)

© Peter R. Egli 2017
18/27

Rev. 2.00

CORBA peteregli.net

4. Server Programming Models - How to Implement the Server (3/5)
ImplBase-Inheritance Model (deprecated):

The server (servant) class directly implements ImplBase class (_HelloImplBase in the example).

HelloOperations

Hello

_HelloImplBase

HelloImpl

(servant)
HelloServer

_HelloStub

(client stub)
HelloClient

Comm.

Servant = implementor of interface

© Peter R. Egli 2017
19/27

Rev. 2.00

CORBA peteregli.net

4. Server Programming Models - How to Implement the Server (4/5)
POA Inheritance Model:

The POA is the standard interface for connecting servants to the ORB.

HelloOperations

Hello

HelloPOA

(server skeleton)

HelloImpl

(servant)
HelloServer

_HelloStub

(client stub)
HelloClient

Comm.

Servant = implementor of interface

© Peter R. Egli 2017
20/27

Rev. 2.00

CORBA peteregli.net

4. Server Programming Models - How to Implement the Server (5/5)
POA/Tie Model:

The POA-Tie dispatches requests to servant delegates.

HelloOperations

Hello

HelloPOA

(server skeleton)

HelloImpl

(servant)
HelloServer

_HelloStub

(client stub)
HelloClient

Comm.

Servant = implementor of interface

HelloPOATie

(tie class)

© Peter R. Egli 2017
21/27

Rev. 2.00

CORBA peteregli.net

5. COS – CORBA Object Services
COS defines additional services that extend the CORBA 2.0 standard.

These service are, however, rarely used in practice.

Service Description

Life Cycle Service Support for the creation, copying, moving and deleting of objects.

Persistence Common interface for storing / retrieving objects from storage.

Naming Services Primary object location service, mapping of human readable names to object

references.

Event Service Event notification mechanism (event supplier and consumer objects).

Push (publish - subscribe) and pull (=polling) models.

Concurrency Control Resource locking, transaction locks.

Transaction Service Flat and nested transactions (sub-transactions).

Relationship Services Explicit definition of relationships of objects.

Query Service Mapping CORBA objects to relational DBs (a kind of ORM).

Licensing Service Controlled access to objects.

Property Service Association of properties to objects at runtime (properties are not part of IDL

interface).

Time Service Synchronization of clocks on different hosts.

Security Service Authentication and propagation of credentials, encryption.

© Peter R. Egli 2017
22/27

Rev. 2.00

CORBA peteregli.net

6. DII – Dynamic Invocation Interface
Static invocation:

In a static invocation, a call of an operation is performed through a client stub.

The client stub needs to be linked to the client (thus client stub must be available @ compile

time).

Dynamic invocation with DII:

The dynamic invocation does not need or use a client stub but dynamically (@ run-time)

constructs a client stub (=proxy object).

DII allows calling operations on objects that are not known @ client compile time.

From the server point of view, DII is identical to static invocation.

DII uses the IFR (InterFace Repository = central registry for interfaces) for locating the

right server object.

DSI – Dynamic Skeleton Interface:

DSI is the server-side equivalent of DII.

© Peter R. Egli 2017
23/27

Rev. 2.00

CORBA peteregli.net

7. ORB - Object Request Broker (1/4)
ORB functions:

A. Object location (providing client location transparency)

B. Data marshaling

C. Server side: Deliver requests to objects (=servants)

D. Client side: Return output values back to the client

ORB-Interoperability:

Interoperability between ORBs can be achieved with:

a. Employing ORBs that use the standard protocol GIOP (General Inter-ORB Protocol)

 IIOP (Internet Inter-ORB Protocol) is a variant of GIOP

 GIOP / IIOP uses interoperable object identifiers (IOR: Interoperable Object Reference)

b. Use of bridges between different ORB-protocols

 Bridges translate from one ORB-protocol to another

Client

Client machine

ORB

Server machine

ORB

Server

GIOP (IIOP)

Client

Client machine

ORB

Server machine

ORB

Server

GIOP (IIOP)
Inter-ORB bridge

Proprietary protocol

© Peter R. Egli 2017
24/27

Rev. 2.00

CORBA peteregli.net

7. ORB - Object Request Broker (2/4)
What is location transparency?

The location of remote objects (in which server they live) is hidden to the client application.

But: The location must be known to the client‘s ORB instance.

How to locate (find) remote objects:

1. Via direct ORB-connection:
ORB orb = ORB.init(„-ORBInitialPort 1234 -ORBInitialHost RemoteHost", null);

org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

NameComponent nc = new NameComponent("Hello", "");

NameComponent path[] = {nc};

Hello helloImpl = HelloHelper.narrow(ncRef.resolve(path));

 Argument in ORB.init() specifies remote host and port.

 Not true location transparency (remote host address must be passed into client application).

Client

Client machine

ORB

Server machine ORB

NameService

Servants

© Peter R. Egli 2017
25/27

Rev. 2.00

CORBA peteregli.net

7. ORB - Object Request Broker (3/4)
2. Use naming service:
ORB orb1 = ORB.init(„-ORBInitialPort 10001 -ORBInitialHost orbhost1.net", null);

// Initialize another ORB reference

ORB orb2 = ORB.init(„-ORBInitialPort 10002 -ORBInitialHost orbhost2.net", null);

// Get references to the Naming Services

org.omg.CORBA.Object nc1Ref = orb1.resolve_initial_references("NameService");

org.omg.CORBA.Object nc2Ref = orb2.resolve_initial_references("NameService");

// Narrow the Naming Service references to NamingContexts and use them

...

 The client still has to deal with multiple remote naming service objects (1 for each remote

ORB).

3. Use a central naming service as a bridge to other ORBs:

A central naming service allows looking up remote object

references.

Server machine ORB

NameService

Client
Client machine

ORB

Server machine ORB

NameService

Servants

Server machine ORB

NameService

Servants

© Peter R. Egli 2017
26/27

Rev. 2.00

CORBA peteregli.net

7. ORB - Object Request Broker (4/4)
4. Use IOR – Interoperable Object References:

IORs are stringified object references.

IORs contain information about the remote object in order to:

a. locate the remote object‘s home ORB (address, port)

b. construct a local stub from the string representation

The IOR can be obtained as follows:
ORB orb = ORB.init(args, null);

HelloImpl helloImpl = new HelloImpl();

helloImpl.setORB(orb);

orb.object_to_string(helloImpl)

An IOR looks like:
IOR:000000000000001749444c3a48656c6c6f4170702f48656c6c6f3a312e30000000000001000000000000006e000102000000000d3137322e32302

e39322e353100000ed000000019afabcb00000000024b3bc3e80000000800000000000000001400000000000002000000010000002000000000000100

0100000002050100010001002000010109000000010001010000000026000000020002

The IOR must be passed to client in some way (web page, web service etc.).

© Peter R. Egli 2017
27/27

Rev. 2.00

CORBA peteregli.net

8. Pros and cons of CORBA
Language independence (different mappings defined, e.g. C++, Java, Python, COBOL)

OS independence

Viable integration technology for heterogenous legacy systems

Strong data typing

Complex standard, difficult to implement for CORBA product vendors

Too complex to use compared to the features and services it provides

„Firewall-unfriendly“ because CORBA (IIOP) uses arbitrary TCP ports

Lack of security

