
© Peter R. Egli 2017
1/20

Rev. 2.60

SSH - Secure Shell peteregli.net

OVERVIEW OF THE SECURE SHELL PROTOCOL
FOR SECURE REMOTE SESSIONS AND

PORT FORWARDING

SSH
SECURE SHELL

Peter R. Egli
peteregli.net

© Peter R. Egli 2017
2/20

Rev. 2.60

SSH - Secure Shell peteregli.net

Contents
1. SSH in a nutshell

2. SSH-1 architecture

3. SSH-1 protocol

4. SSH-1 server (host) authentication

5. SSH-1 client authentication

6. SSH-1 keys

7. SSH-1 session trace

8. SSH configuration

9. SSH port forwarding / SSH tunneling

© Peter R. Egli 2017
3/20

Rev. 2.60

SSH - Secure Shell peteregli.net

1. SSH in a nutshell (1/2)
Why SSH?

SSH (RFC4250 et.al.) is a secure replacement for TELNET, rcp, rlogin and rsh for login, remote

execution of commands and file transfer.

SSH security:

Security-wise SSH provides:

1. Confidentiality (nobody can read the message content).

2. Integrity (guarantee that data is unaltered on transit).

3. Authentication (of client and server).

This provides protection against:

- IP spoofing

- IP source routing

- DNS spoofing

- Password interception

- Eavesdropping

SSH versions:

There exist 2 (incompatible) versions of SSH:

- SSH-1

- SSH-2

SSH-1.x (1.5, 1.99) are updates of version 1 and thus compatible with SSH-1.

http://tools.ietf.org/html/rfc4250

© Peter R. Egli 2017
4/20

Rev. 2.60

SSH - Secure Shell peteregli.net

1. SSH in a nutshell (2/2)
SSH encryption:

SSH uses symmetric and asymmetric (public/private) keys for encryption.

SSH supports various different encryption algorithms like 3DES, AES, Blowfish, IDEA.

SSH can be used for:

- Secure remote shell (secure system administration)

- Port forwarding / tunneling (securely circumvent firewalls to access a remote system)

- X11- or VNC-session tunneling (secure remote desktop connection)

SSH comes with some administrator tools:

- SSH key generation with ssh-keygen

- ssh-agent (manage private keys for client)

- ssh-add (register new key with SSH agent)

- make-ssh-known-hosts (list of known host keys of a domain)

SSH compression:

SSH optionally supports compression (gzip= GNU zip).

Popular SSH clients:

Windows: PuTTY, TTSSH (Teraterm), WinSCP.

Linux: OpenSSH client.

© Peter R. Egli 2017
5/20

Rev. 2.60

SSH - Secure Shell peteregli.net

M
U

X

C
o

m
p

re
s

s
io

n

In
te

g
ri

ty

E
n

c
ry

p
ti

o
n

2. SSH-1 architecture

User

Terminal

SSH

Agent

Locally

tunneled

TCP port

M
U

X

C
o

m
p

re
s

s
io

n

In
te

g
ri

ty

E
n

c
ry

p
ti

o
n

Channels

SSH connection

H

$HOME/.ssh/known_hosts

/etc/ssh_known_hosts

H

SSH Client

Shell

Agent

Socket

TCP

Connection

Channels

S

H

SSH Server

Public and private host and

server keys (H and S)

SK

Session key

H,S

SK

Session key
H

H

Public key

Private key

Plaintext

Encrypted

SK

Session key

© Peter R. Egli 2017
6/20

Rev. 2.60

SSH - Secure Shell peteregli.net

3. SSH-1 protocol
SSH uses a message based protocol (inband, same TCP connection for SSH-1 protocol and for user data).

SYN

SYN, ACK

ACK

SSH_SMSG_PUBLIC_KEY
• anti-spoofing cookie
• public server key (S)
• public host key (H)
• protocol flags
• supported ciphers (3DES, Blowfish)
• supported authentication protocols

server protocol “SSH-1.99-Sun_SSH_1.0

client protocol “SSH-1.5-1.2.30”

SSH_CMSG_SESSION_KEY
• cipher_type
• anti-spoofing cookie
• encrypted session-key
• protocol flags

SSH_SMSG_SUCCESS

TCP connection

establishment

(server TCP port 22)

Plaintext

communication

Encrypted

communication

Protocol version

exchange to check

compatibility

(SSH-1, SSH-2)

Key and capability

exchange;

server authentication

Client and server change to packet based

protocol. Server identifies itself with client (host

key H and server key S) and offers its session

parameters.

Client chooses encryption type and

authentication.

Client authenticates server and generates a

session key SK (symmetric key) from public

server key S. The session key is encrypted

with the host and server keys (H and S) (double

encryption).

Client waits for ok from server encrypted with

session key SK. Client and server activate

encryption with session key SK.

Server and client inform each other about their

SSH version (and possibly implementation even

though this might reveal valuable information

for an attacker).

Client authentication

User data exchange

After server authentication follows client

authentication (client authenticated on server)

and ultimately transfer of user data.

SSH Client SSH Server

© Peter R. Egli 2017
7/20

Rev. 2.60

SSH - Secure Shell peteregli.net

SSH_SMSG_PUBLIC_KEY

H

Host keys (along with host FQDNs) are stored in:

$HOME/.ssh/known_hosts (user specific

known hosts) and

/etc/ssh_known_hosts (global known hosts

as set by sysadmin).

H

host FQDN

Client compares public host key from server with host key in ssh_known_hosts; if there is a match

the client proceeds, otherwise the client issues a security warning and leaves it to user to add

(new/changed) server (and host key) to ssh_known_hosts.

 This thwarts man-in-the-middle attacks (but not for the first time a client connects to a host).

 Sysadmin can control behavior with setting of ‘StrictHostKeyConfig’ in file

/etc/ssh/ssh_config (values ‘ask’/’no’/’yes’).

Server authentication is completed with SSH_SMSG_SUCCESS (encrypted with session key SK). If

the client can correctly decrypt the message SSH_SMSG_SUCCESS authentication is successful

because only a genuine server could have decrypted encrypted session key in

SSH_CMSG_SESSION_KEY with its private host and server keys (H and S).

equal?

/etc/ssh/ssh_host_key.pub

H

H

/etc/ssh/ssh_host_key

SSH_CMSG_SESSION_KEY

SSH_SMSG_SUCCESS

H

Plaintext

Encrypted

H

Public key

Private key

SK

S

Server key in RAM

(not in a file for enhanced

security)H,S

S

H Asymmetric key(s)

Symmetric keySK

4. SSH-1 server (host) authentication - client verifies if server is authentic (1/2)
Server (host) authentication by the client is usually employed in order to establish an SSH connection.

Servers often do not authenticate the client and simply rely on the user login (username/password) to verify

if the user is authentic.
SSH Client SSH Server

© Peter R. Egli 2017
8/20

Rev. 2.60

SSH - Secure Shell peteregli.net

Host FQDN RSA key number

of bits

RSA key

public exponent

fhzh.ch 1024 35 1262013027273102159608907871813737119930019995093

30573487788865358391958124645875250149627765311583353258975390099

71823580290977838267552259821335446333575835614569049621613212111

49677542580895529724117297185922691874137927695315467895981581869

47064817429764437488314580261421912859857694389186305471059647293

some text (being ignored)

RSA key

public modulus

foo.com 1024 37 2117267676734823489928349823749827349823948792834

98345798700987893287786878019809873897234405734857012309982341273

09845365987923640918230982875986918297812372085909801011209012310

67238461230090980129705130685566376485678461834071010712841963958

34652817692871037500980397019719836492165918613701701094581130701

my work key

User defined

text (ignored)

4. SSH-1 server (host) authentication - client verifies if server is authentic (2/2)
Each trusted server has an entry in the file known_hosts (~/.ssh/known_hosts) on the client.

Contents of ~/.ssh/known_hosts file (public host keys):

1 entry for

each host

(SSH server)

© Peter R. Egli 2017
9/20

Rev. 2.60

SSH - Secure Shell peteregli.net

SSH_CMSG_USER

• user login name on server
Client requests to start client authentication for

specified user.

Server responds with SUCCESS message if no

authentication is required or with FAILURE

message if authentication for specified user is

required.

SSH_SMSG_SUCCESS

SSH_SMSG_FAILURE

SSH_CMSG_AUTH_RSA

• public RSA key (as identifier)

If authentication is required client sends

message with the selected authentication

method (selected on client).

SSH_SMSG_AUTH_RSA_CHALLENGE
• encrypted challenge

SSH_CMSG_AUTH_RSA_RESPONSE

• MD5 checksum of challenge and session

ID

SSH_SMSG_SUCCESS

SSH_SMSG_FAILURE

Server checks if the public key is contained in

$HOME/.ssh/authorized_keys. If so the server

sends 256-bit random challenge value to client

(encrypted with public RSA key).

Client decrypts challenge with private RSA key

and sends back the MD5 checksum of the

challenge and session ID (and not the plaintext

challenge in order to thwart plaintext attacks).

Server too calculates MD5 hash over challenge

and session ID and compares it with client’s

response.

Server responds either with SUCCESS or

FAILURE depending on the outcome of the

authentication.

RSA client authentication

U

~/.ssh/mykey.pub

~/.ssh/mykey or

anywhere else known

to SSH client

U

5. SSH-1 client authentication – server verifies if client is authentic (1/3)
Option 1 - RSA public key client authentication:

Most secure client authentication method for SSH-1 (private key is protected by passphrase).

No secret authentication data is stored on server (only public RSA key).

Authentication is independent of client machine (IP address, FQDN).

Users must generate and manage keys and authorization files.

More difficult to debug if something does not work.

SSH Client SSH Server

© Peter R. Egli 2017
10/20

Rev. 2.60

SSH - Secure Shell peteregli.net

Password client authentication

SSH_CMSG_USER

• user login name on server
Client requests to start client authentication for

specified user.

SSH_SMSG_SUCCESS Server responds with SUCCESS message if no

authentication is required or with FAILURE

message if authentication for specified user is

required.SSH_SMSG_FAILURE

SSH_CMSG_AUTH_PASSWORD

• plaintext password
If authentication is required client sends

message with plaintext password (user account

password).

SSH_SMSG_SUCCESS

SSH_SMSG_FAILURE

Server checks if password matches username.

Server responds either with SUCCESS or

FAILURE depending on the outcome of the

authentication.

5. SSH-1 client authentication – server verifies if client is authentic (2/3)
Option 2 - Plaintext password client authentication:

Simple (no configuration required, no need to carry around a private key).

No secret authentication data is stored on server (only public RSA key).

Authentication is independent of client machine (IP address, FQDN).

Plaintext password is naturally encrypted with session key SK.

Less secure than public-key authentication (RSA) since password could be cracked on a compromised server.

SSH Client SSH Server

© Peter R. Egli 2017
11/20

Rev. 2.60

SSH - Secure Shell peteregli.net

5. SSH-1 client authentication – server verifies if client is authentic (3/3)
Option 3 - Trusted host client authentication (Rhosts and RhostsRSA):

Simple, no need for user to enter passwords or passphrases; this makes it suited for

automation (scripts, cron jobs etc.).

Authentication is bound to client machine and not user.

Usually this authentication method is disabled on servers since it is deemed insecure.

Option 4 - Trusted Information Systems (TIS) client authentication:

TIS improves password authentication in that it uses a password only once (OTP One-Time Passwords).

In TIS the server sends a challenge to the client which presents challenge to user. The user is requested to

enter a password that he reads from a device (SecurID etc.) or software. The client sends the response back

to the server for authentication.

Option 5 - Kerberos authentication

Option 6 - S/Key (one-time password scheme for Unix-type systems).

© Peter R. Egli 2017
12/20

Rev. 2.60

SSH - Secure Shell peteregli.net

Name Lifetime Generated by Type Description

User key U Persistent User Public

(asymmetric)

Identification of a user on a server. This key is

used by the SSH client to authenticate a user to

the server.

(key generated with /etc/ssh/ssh-keygen).

Session key SK One session Client (and

server)

Private

(symmetric)

Used for encrypting the entire session. The

session key is randomly generated and is thus

independent of host and server keys (H, S). Both

client and server use the same session key for

encryption/decryption in both directions of the

communication.

Host key H Persistent Sysadmin Public

(asymmetric)

Used for identification / authentication of a server

(host) on a client (server authentication). In case

of multiple SSH servers on the same machine

each instance of server may have its own host

key.

Also used for session key encryption (together

with server key for double encryption).

Server key S Limited

(default 1 hour)

Server Public

(asymmetric)

Used for encrypting the session key before

transmission. Also used for server authentication

on client. The server key is never stored in the

file system but rather is kept in RAM (in running

instance of server).

6. SSH-1 keys and keys and keys…

SK

U
U

H
H

S
S

© Peter R. Egli 2017
13/20

Rev. 2.60

SSH - Secure Shell peteregli.net

7. SSH-1 session trace
SSH trace with password client authentication:

C: 1 0.000000 192.168.1.15 -> 193.5.54.112 TCP 1962 > 22 [SYN] Seq=4121554192 Ack=0 Win=16384 Len=0

S: 2 0.020510 193.5.54.112 -> 192.168.1.15 TCP 22 > 1962 [SYN, ACK] Seq=608128475 Ack=4121554193 Win=1460 Len=0

C: 3 0.020545 192.168.1.15 -> 193.5.54.112 TCP 1962 > 22 [ACK] Seq=4121554193 Ack=608128476 Win=17280 Len=0

S: 4 0.065252 193.5.54.112 -> 192.168.1.15 SSH Server Protocol: SSH-1.99-Sun_SSH_1.0

C: 5 0.073510 192.168.1.15 -> 193.5.54.112 SSH Client Protocol: SSH-1.5-TTSSH/1.5.4 Win32

S: 6 0.093569 193.5.54.112 -> 192.168.1.15 TCP 22 > 1962 [ACK] Seq=608128497 Ack=4121554219 Win=50400 Len=0

S: 7 0.099686 193.5.54.112 -> 192.168.1.15 SSHv1 Server: Public Key

Packet Length: 267

Padding Length: 5

Msg code: Public Key (2)

Payload: B41F1D0A80F036F30000030000062303...

C: 8 0.126817 192.168.1.15 -> 193.5.54.112 SSHv1 Client: Session Key

Packet Length: 148

Padding Length: 4

Msg code: Session Key (3)

Payload: 03B41F1D0A80F036F3040053F168B3B7...

S: 9 0.163857 193.5.54.112 -> 192.168.1.15 TCP 22 > 1962 [ACK] Seq=608128773 Ack=4121554375 Win=50244 Len=0

S: 10 0.229181 193.5.54.112 -> 192.168.1.15 SSHv1 Server: Encrypted packet len=5 (SSH_SMSG_SUCCESS)
C: 11 0.356903 192.168.1.15 -> 193.5.54.112 TCP 1962 > 22 [ACK] Seq=4121554375 Ack=608128785 Win=16971 Len=0

C: 12 4.622742 192.168.1.15 -> 193.5.54.112 SSHv1 Client: Encrypted packet len=41 (SSH_CMSG_USER)

S: 13 4.683739 193.5.54.112 -> 192.168.1.15 SSHv1 Server: Encrypted packet len=5 (SSH_SMSG_FAILURE)

C: 14 4.684010 192.168.1.15 -> 193.5.54.112 SSHv1 Client: Encrypted packet len=41 (SSH_CMSG_AUTH_PASSWORD)

S: 15 4.760309 193.5.54.112 -> 192.168.1.15 SSHv1 Server: Encrypted packet len=5 (SSH_SMSG_SUCCESS)
C: 16 4.760570 192.168.1.15 -> 193.5.54.112 SSHv1 Client: Encrypted packet len=41 (user data)

...

C: Client server traffic

S: Server client traffic

© Peter R. Egli 2017
14/20

Rev. 2.60

SSH - Secure Shell peteregli.net

8. SSH configuration (1/2)
SSH configuration with password client authentication (RSA keyset):

1. Add server (host) to client’s list of known hosts:

TTSSH (Teraterm SSH): menu Setup->TCP/IP

The entry will be added to the file

~/.ssh/known_hosts (Unix) or ssh_known_hosts (TTSSH).

2. Configure client authentication and credentials:

Select RSA key authentication along with proper

(private) RSA key file (copied from server in step 4.).

TTSSH: menu Setup->SSH Authentication

3. Save configuration:

TTSSH: menu Setup->Save setup…

© Peter R. Egli 2017
15/20

Rev. 2.60

SSH - Secure Shell peteregli.net

8. SSH configuration (2/2)
SSH configuration with public key client authentication (RSA keyset):
1. Configure a public key on server:

Create key on server (or wherever ssh-keygen is available):
/etc/ssh/ssh-keygen

(execute program on server, generates key pair (public, private) in $HOME/.ssh/identity.pub)

(choose a pass-phrase for private key encryption)

2. Add created public key to key file:
cd $HOME/.ssh

cat identity.pub >> authorized_keys

(this file is examined by SSH server (=sshd))

3. Copy the private key in file ‘identity’ to PC where TTSSH runs:

 do this through a SSH session with password authentication

4. Delete private key on server machine:
rm identity

5. Add server (host) to client’s list of known hosts:

TTSSH (Teraterm SSH): menu Setup->TCP/IP

The entry will be added to the file ~/.ssh/known_hosts (Unix) or ssh_known_hosts (TTSSH).

6. Configure client authentication and credentials:

Select RSA key authentication along with proper (private) RSA key file (copied from server in step 3.).

TTSSH: menu Setup->SSH Authentication

7. Save configuration:

TTSSH: menu Setup->Save setup…

© Peter R. Egli 2017
16/20

Rev. 2.60

SSH - Secure Shell peteregli.net

9. SSH port forwarding / SSH tunneling (1/5)
Pass protocols (applications) securely through an unsecure network.

SSH port forwarding allows applications to pass traffic through firewalls that would normally

block the application protocol (but not SSH), e.g. when NAPT (Network Address Port Translation)

is used on the firewall.

• The Connection between application client and server is relayed through a pair of SSH

client and server.

• The connection between client and server host is protected (but not the connection between

SSH client and application client and between SSH server and application server!).

Application

Client

SSH Client

Client host

Application

Server

SSH Server

Server host

SSH connection (tunnel)

Firewall Firewall

Secure application to application communication

© Peter R. Egli 2017
17/20

Rev. 2.60

SSH - Secure Shell peteregli.net

9. SSH port forwarding / SSH tunneling (2/5)
Local port forwarding:

NSAP

TSAP

Sockets

IP

Socket

TCP

SSH Client

P1 P2

127.0.0.1

Application

Client

P3

0.0.0.0

IP

Socket

TCP

22

Application

Server

0.0.0.0

SSH Server

P4 P2

127.0.0.1

SSH connection

(tunnel)

• Application client and SSH client are on same machine (and accordingly application server and SSH server).

• Local forwarding configuration command:
$ ssh -L<local port>:<local host>:<remote port> <remote host>

Example: $ ssh -L 2001:localhost:143 pop.fhzh.ch

• Forwarding is initiated by client sending SSH_CMSG_PORT_FORWARD_REQUEST message to SSH server

(along with remote port number). SSH client and server establish a channel for this forwarding within the

existing SSH connection. Client application is bound to localhost/P1 and talks to localhost/P2.
P1: source port number of application client’s TCP connection (ephemeral port number).

P2: port number to be forwarded; can be well-known port, e.g. 21 for FTP (2001 in example above).

P3: source port number of SSH client’s SSH TCP connection (ephemeral port).

P4: source port number of SSH server’s TCP connection to application server (ephemeral port).

© Peter R. Egli 2017
18/20

Rev. 2.60

SSH - Secure Shell peteregli.net

• Application client and SSH client are on different machines (and accordingly application server

and SSH server).

• Remote forwarding configuration command:
$ ssh -R<remote port>:<local host>:<local port> <remote host>

Example: $ ssh -R 2001:localhost:143 pop.fhzh.ch

P1: source port number of application client’s TCP connection (ephemeral port number)

P2: port number to be forwarded; can be well-known port, e.g. 21 for FTP (2001 in example above)

P3: source port number of SSH client’s SSH TCP connection (ephemeral port)
P4: source port number of SSH server’s TCP connection to application server (ephemeral port)

9. SSH port forwarding / SSH tunneling (3/5)
Remote forwarding:

IP

Socket

TCP

SSH Client

143 P4

127.0.0.1

Application

Server

P3

0.0.0.0

IP

Socket

TCP

22

Application

Client

0.0.0.0

SSH Server

P2 P1

127.0.0.1

SSH connection

(tunnel)

NSAP

TSAP

Sockets

© Peter R. Egli 2017
19/20

Rev. 2.60

SSH - Secure Shell peteregli.net

Host C

Application

client

SSH

client

Host A

SSH

server

Host B

Application

server

Host S

$ ssh -L P:S:W B

Port P

Port W

• Application client/server and SSH client/server are on different machines.

• Local forwarding configuration command (on host A):
$ ssh -L<local port>:<server host>:<remote port> <remote host>

Example: $ ssh -L P:S:W B

9. SSH port forwarding / SSH tunneling (4/5)
Off-host-port forwarding:

SSH connection (tunnel)

© Peter R. Egli 2017
20/20

Rev. 2.60

SSH - Secure Shell peteregli.net

9. SSH port forwarding / SSH tunneling (5/5)
FTP forwarding (let local FTP client use SSH):
A. Configuration:

1. Configure port forwarding on TTSSH:

Menu ‘Setup’->’SSH Forwarding…’

‘Forward local port’ = 21 (for FTP).

‘to remote machine’ = server / host to which to connect through FTP in SSH tunnel.

2. Configure FTP client to enable use of SSH:

Configure FTP client such that it connects to 127.0.01 (localhost) and 21 as remote port.

Enable passive mode (PASV=on); in active mode the server will not be able to open a data connection since the

client’s IP that the server ‘sees’ is localhost (127.0.0.1).

B. Usage:

1. Log on to desired server through SSH (with TTSSH) thus establishing an SSH secured TCP connection.

2. Start FTP client (will connect to localhost which is forwarded to FTP server through SSH server).

3. Normal file upload/download operation.

 But: some servers (e.g. FHZH FTP server) will rant if the client wants to open an FTP-Data connection with

a different source IP address (public client IP address since FTP-Data does not pass through SSH tunnel)

than the FTP control connection (localhost on server=172.10.0.1 when using SSH tunnel); the warning will be

something like “425 Possible PASV port theft, can not open data connection” (this is a security feature of the

FTP server).

The problem is that FTP clients, when in passive mode, try to open a data connection to the address

provided by the server after sending the PASV command (FTP server communicates IP/port number encoded

as n1,n2,n3,n4,n5,n6) because opening a connection to localhost/20 would not be possible since server port

is dynamic and there is no way to let the SSH client dynamically open (listen) a TCP port on localhost.

