
© Peter R. Egli 2017
1/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF HTTP, HTML, WWW
AND WEB TECHNOLOGIES

HTTP / HTML
WWW

© Peter R. Egli 2017
2/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

Contents
1. Web Precursors

2. WWW Elements

3. HTML

4. Web Address

5. HTTP RFC2616 Protocol

6. The HTTP PATCH method - RFC5789

7. HTTP 1.0 versus HTTP 1.1

8. HTTP Authentication

9. Active / Stateful Web

10. Web Caching

11. Web Audio / Video Streaming

© Peter R. Egli 2017
3/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

1. HTTP / Web precursors
 The world (=Internet) before the advent of HTTP/HTML:

1. WAIS: Wide Area Information Service was used for retrieval of documents from

distributed and indexed databases.

2. gopher: precursor of WWW; lets browse servers through menues; gopher made use

of WAIS, archie, FTP and telnet and provided a common interface; gopher was text only;

3. FTP: File Transfer Protocol was and still is used for tranferring files from host to host.

4. archie: allows accessing public lists of files.

 HTTP / HTML is the „Lingua Franca“ of the Net; almost all information is today accessible

through HTTP. HTTP has become the standard format for information representation (user

graphical front end).

© Peter R. Egli 2017
4/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

2. Web elements
 Web client (browser program or other) retrieves pages encoded in HTML from web

server and displays the page (graphical representation).

 Page is taken from local cache (containing previous HTML responses) if it has not

been modified (and has been retrieved previously).

 Proxy server has an HTTP client and server and performs some function, e.g. filtering (blocking certain

pages, replacing content etc.) and possibly also caching.

Local web

cache

Proxy Server

S C

TCP Connection

HTTP session

Web Server

(origin server)

www.zfh.ch

S

Hyperlink to

http://www.zhaw.ch/

en/zhaw/contact.html

Web Server

(origin server)

www.zhaw.ch

S

TCP Conn.

HTTP session

C

Page encoded

in HTML

HTTP Request

HTTP Response

TCP Conn.

HTTP session

C HTTP client

HTTP serverS

© Peter R. Egli 2017
5/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

3. HTML primer (1/4)
 Pages retrieved from web server are encoded in HTML (Hypertext Markup Language).

 HTML is one of many tag (<>) based languages (SGML Structured Generalized Markup

Language).

 While very successful for web HTML has some problems:

- Mixture of content (information) and formatting (layout tags such as
 and).

- HTML is not well-formed (some tags do not have opening/closing tag pair such as
).

- Proper nesting of tags is sometimes violated.

 HTML tags:

© Peter R. Egli 2017
6/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

3. HTML primer (2/4)
 HTML is a tree of nested tags that describe how the page should be displayed (more or less).

 Due to some freedom in displaying the pages will look differently on different browsers.

 Example HTML code and according display:

© Peter R. Egli 2017
7/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

3. HTML primer (3/4)
 How to separate style/format and content (1):

Solution 1: CSS Cascading Style Sheets:

+ Export some of the formatting information into separate files (*.css files).

+ Reuse of defined templates to give pages the same look (background, colors etc.).

+ Hierarchy of style sheets.

Example:
In HTML page header: <link href="firststyle.css" rel="stylesheet" type="text/css">

In HTML page body: <p>Simple content text ready for control.</p>

In CSS file: p {

font-family: Verdana, Arial, Helvetica, sans-serif;

font-size: 12px;

color: #FF0000;

}

Example page:

http://www.csszengarden.com/

Solution 2: Usage of XHTML2 (eXtensible HTML):
XHTML2 is supposed to be the successor to HTML. Unlike HTML (=implementation of SGML) XHTML is an XML-

language (XML is a more restrictive subset of SGML). XHTML has few presentational elements (CSS should be used

instead for presentation=layout) but more structural elements. XHTML2 is not backward compatible with HTML.

See http://www.w3.org/TR/2005/WD-xhtml2-20050527/introduction.html.

But: XHTML 2.0 discontinued by end of 2009 (to be replaced by HTML 5).

See http://www.w3.org/News/2009#item119

http://www.csszengarden.com/
http://www.w3.org/TR/2005/WD-xhtml2-20050527/introduction.html
http://www.w3.org/News/2009

© Peter R. Egli 2017
8/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

3. HTML primer (4/4)
 How to separate style/format and content (2):

Solution 3: XML and XSL (eXtensible Stylesheet Language, XSLT): XSLT processor

transforms .xml file according to .xsl file into an .html

file (or other type).

.xml .xsl

XSLT

processor

<html>

<body >

<table border=“2”>

<tr>

<th>Title</th>

<th>Author</th>

<th>Year</th>

</tr>

<tr>

<td>Computer Networks, 4/e</td>

<td>Andrew S. Tanenbaum</td>

<td>2003</td>

</tr>

<tr>

<td>Modern Operating Systems, 2/e</td>

<td>Andrew S. Tanenbaum</td>

<td>2001</td>

</tr>

<tr>

<td>Structured Computer Org., 4/e</td>

<td>Andrew S. Tanenbaum</td>

<td>1999</td>

</tr>

</body>

</html>

.html

XML file contains content (data:) XSL file contains transformation commands:
Output file can be HTML,

RTF or any other text type:

© Peter R. Egli 2017
9/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

4. Web address (1/4)
 URL Uniform Resource Locator RFC1738:

A web address (URL) is composed as follows:

scheme://[username[:password]@]host[:port]/path[?#query]

scheme = Protocol (http, ftp, smtp, gopher, file, news, mailto, telnet, ldap).

username:password = Optional credentials (no longer supported by M$ IE due to security

concerns, Mozilla Firefox supports it though).

host = FQDN of host, e.g. www.zhaw.ch; to be translated into IP address by

DNS resolver.

port = Listening port of server (optional); 80 (default) or 8080 (usually proxy).

path = Path of requested resource on server, e.g. index.html (default).

query = Optional context information (sequence of parameters in “key=value”

notation separated by ‘&’).

Examples:

http://www.zhaw.ch:80/index.html ‘Standard’ HTTP URL.

http://www.google.ch/search?hl=de&q=url+query&meta= HTTP URL with query string.

ftp://bart.isz.ch/ FTP protocol, initiates FTP transfer through

web browser.

ftp://anonymous:mypassword@ftp.zhaw.ch/ FTP URL with credentials.

file:///C:/temp/page.html File protocol, retrieval of local file (not via

HTTP from server).

mailto:xegp@zhaw.ch Mail protocol, starts mail client (user agent).

http://www.zhaw.ch/
http://www.hsz-t.ch/index.html
http://www.google.ch/search?hl=de&q=url+query&meta=
ftp://bart.isz.ch/
ftp://anonymous:mypassword@ftp.zhaw.ch/
../../../temp/page.html
mailto:pegli@hsz-t.ch

© Peter R. Egli 2017
10/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

4. Web address (2/4)
 URx RFC3986 (1):

 Resource:

A resource on the web is anything that can have an identity. The resource does not necessarily have to be

accessible through a network. The term resource is rather conceptual, but includes also anything we

consider a resource in the narrower sense.

Examples of resources:

 A physical noticeboard

 All people within the University of Zürich

 A book

 A sentence from a book

 A GIF image

 An HTML document

 A postscript document residing on an FTP server

 Identifier:

An identifier is an object that acts as a reference to something that has an identity (resources).

In the web an identifier is a string that conforms to the URI syntax. Classes of identifiers are URL, URN and

URC.

Examples of identifiers:

 A forename and a surname

 A postcode

 An ISBN number

 An URL like http://www.zhaw.ch

Identifier Resource
refers to

© Peter R. Egli 2017
11/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

4. Web address (3/4)
 URx RFC3986 (2):

 URL Uniform Resource Locator:

URLs are standard way to address web documents. URLs give (preferred) location of resource (document)

on web (IP address) and the access mechanism (scheme: ftp, http, mailto etc.).

Example: http://www.zhaw.ch

Simple, widely used.

Identify resource by location rather than name (real-world equivalent: identify person by location rather

than name).

- If resource moves to another location/server links are broken („404 document not found“), i.e. URLs are

transient.

- URLs can not carry describing meta-data (describing resource in more detail).

- Many tools confuse URL and URN and silently assume that URL is name and location of a resource.

 URI Uniform Resource Identifier:

Both URLs and URNs are URIs (super-class):

 URC Uniform Resource Citation:

URCs are descriptors of resources (URCs point to metadata of resources). They are unlikely to become a

standard.

ftp:

http:

file:

urn:

URNURL
URI

http://www.zhaw.ch/

© Peter R. Egli 2017
12/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

4. Web address (4/4)
 URx RFC3986 (3):

 URN Uniform Resource Name:

URNs identify a resource by a unique name, preceded by a namespace

avoiding conflicts (delegation, hierarchy).

URNs are per definition globally unique and thus have global scope

(conflict avoidance).

A URL is obtained by querying a URN server.

Open issues (not standardized yet): URN assignment, URN servers

Example: urn:/ISBN:7-678-12345-7.

PURL Peristent URLs:

PURLs (Persistent URLs) are a form of URNs. PURLs are meant to be an

intermediate step in the development of URNs (and their usage).

PURLs are URLs that „point to“ another URL that points to the resource.

PURL is implemented as HTML redirection.

see https://purl.org/

 Comparison of URN/URL with other concepts:

URx: DNS: Books:

Location of copy of resource („where“) URL IP address Location where to

download E-book

Identification („what“) URN Domain name ISBN-number

Data

Base

Client

URN

Server

URN

URL

Resource

Server

URL

Resource

Data

Base

Client

PURL

Server

PURL

URL

Resource

Server

URL

Resource

https://purl.org/

© Peter R. Egli 2017
13/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (1/7)
 HTTP is stateless: Client asks for info, gets it and then drops out (closes TCP connection).

This statelessness is both HTTP‘s strength and weakness (simple but no session/state).

 Like SMTP HTTP commands/responses are based on NVT ASCII.

TCP

IP

DL/PL

HTTP

client

Browser

TCP

IP

DL/PL

HTTP

server

HTTP requests

HTTP responses

Port 80

Server

Process
Server

(AP)

Client

(AP)

Some ephemeral
port (chosen by OS)

TCP connection

Disk with

HTML pages

DL Data Link

PL Physical Link

AP Application Process

NVT Network Virutal Terminal

© Peter R. Egli 2017
14/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (2/7)
 HTTP request consists of request header and an optional request body:

 Example:

1. Request header:
GET /index.html HTTP/1.1 Request type (GET), path, protocol & version.

Connection: Keep-Alive Signal to server that connection should not be closed but

reused for further requests.

User-Agent: Mozilla/4.7 [en] (WinNT; I) Identifier of the client (Netscape).

Accept: image/gif, image/x-xbitmap, Data types and encoding this client can handle (MIME types).

image/jpeg, image/pjpeg, image/png,*/*

Accept-Encoding: gzip Allowed encoding of data in response.

Accept-Language: en Language that client can handle.

Accept-Charset: iso-8859-1,*,utf-8 Character set that client can handle.

An empty line is inserted at the end of the header (like

SMTP). This will cause the server to deliver the response

(in the same TCP connection).

2. Request body:
The body is empty here. It is usually empty for normal GET

requests; if non-empty the body contains data of a POST

command.

Request header

Request body

HTTP request message

© Peter R. Egli 2017
15/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (3/7)
 HTTP response consists of status line, response header and response body (HTML page):

 Example:

1. Status line:
HTTP/1.1 200 OK Return code.

2. Response header:
Date: Thu, 09 Dec 1999 12:23:29 GMT Date/time when document was sent.

Server: Apache/1.3.9 (Linux Debian 2.2) ApacheJServ/1.0 Timestamp and identifier of server.

Last-Modified: Mon, 04 Oct 1999 09:33:15 GMT Time stamp of the retrieved document.

ETag: "0-374-37f8745b“ Tag used for cache validation.

Accept-Ranges: bytes MIME formatted information on charset, length and

type (html) of the result.
Content-Length: 884 Length of data in body.

Content-Type: text/html Type of content (body format).

3. Response body:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 The HTML document.

Final//EN"> [...]

Status line

Response header
HTTP response message

Response body

© Peter R. Egli 2017
16/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (4/7)
 There are various HTTP request header fields to describe the session:

© Peter R. Egli 2017
17/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (5/7)
 HTTP methods (= ‚commands‘ clientserver):

 HTTP uses return codes (serverclient) similar to SMTP and FTP. The codes are organized

in classes (e.g. 2xx codes for success):

Method Description

GET Request to read a resource

HEAD Request to read a web page's header

PUT Request to store a resource

POST Request to append a resource

DELETE Request to delete a resource

TRACE Request to echo the incoming request

CONNECT Reserved for tunneling through proxies

OPTIONS Request to query the server's communication possibilities (methods etc.)

PATCH Request for partial updates (see The HTTP PATCH method)

Code Meaning Example

1xx Informational 100 = Server agrees to accept the client's request.

2xx Success 200 = The request succeeded.

3xx Redirection 301 = The requested resource moved parmentently.

4xx Client error 404 = The requested resource was not found.

5xx Server error 500 = An internal server error occurred.

© Peter R. Egli 2017
18/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (6/7)
 HTTP session with TELNET (TELNET client is „browser“):

HTTP uses NVT ASCII, thus connection to web server can also be established with

TELNET client (even though TELNET client will not display pages graphically).

cmd> telnet www.zhaw.ch 80

GET / HTTP/1.1

Host: www.zhaw.ch

Connection: Keep-Alive

[here comes the page index.html]

GET /fileadmin/templates/img/zhaw_logo_de.gif HTTP/1.1

Host: www.zhaw.ch

Connection: Keep-Alive

[here comes the picture zhaw_logo_de.gif]

etc.

© Peter R. Egli 2017
19/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

5. The HTTP RFC2616 protocol (7/7)
 HTML forms:

Q: How to send data from client to server?

A: Use forms (form tags):

<FORM action=„<URL>“ method=„post‘>

<INPUT name=„“ type=text size=„6“>

<INPUT name=„“ type=textarea rows=„9“ cols=„10“>

<INPUT name=„“ type=password size=„8“>

<INPUT name=„“ type=radio value=„“>

<INPUT name=„“ type=radio value=„“>

<INPUT name=„“ type=submit value=„“>

<INPUT name=„“ type=checkbox value=„“>

<INPUT name=„“ type=reset value=„“>

</FORM>

Once the user presses the submit button the browser

sends the entered data concatenated into a string with

a HTTP POST or GET request message. Spaces are replaced

by ‚+‘ and parameters are separated by ‚&‘. Empty form fields‘

values are not sent.

POST /cgi-bin/widgetorder HTTP/1.1

Host: widget.com

\r\n

customer=Johnny+Sixpack&address=Long+Road

&city=Hometown&state=AZ&country=ZA

&cardno=1098765432&expires=never

&cc=visacard&product=expensive

John Doe

Long Road

Hometown AZ ZA

1098765432 never

© Peter R. Egli 2017
20/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

6. The HTTP PATCH method - RFC5789 (1/2)
Problem with PUT method:

HTTP PUT does not allow partial updates of a resource.

With HTTP PUT, a resource update requires writing the entire resource, thus imposing network

and server load.

Solution:

Partial resource update with HTTP PATCH method.

Partial updates with PATCH are always atomic, i.e. the server must perform the partial update

in its entirety and never provide partially modified resources in a GET request.

The PATCH method is neither safe nor idempotent (see RFC2616).

Patch format:

The HTTP body contains a sequence of patch operations to be applied to the resource

identified by the URI.

The format of the patch operations in the HTTP body is application specific.

Possible formats are:

a. JSON Patch (RFC6902, see example on next page)

b. XML Patch with XPath (RFC5261)

c. Unix diff format (see diff man pages)

d. Proprietary and application specific format

http://www.rfc-editor.org/rfc/rfc5789.txt
http://www.rfc-editor.org/info/rfc2616
http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc5261

© Peter R. Egli 2017
21/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

6. The HTTP PATCH method - RFC5789 (2/2)
PATCH Example (from RFC6902):

Request:
PATCH /my/data HTTP/1.1

Host: www.example.com

Content-Type: application/json-patch+json

Content-Length: 326

If-Match: "abc123"

[

{ "op": "test", "path": "/a/b/c", "value": "foo" },

{ "op": "remove", "path": "/a/b/c" },

{ "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] },

{ "op": "replace", "path": "/a/b/c", "value": 42 },

{ "op": "move", "from": "/a/b/c", "path": "/a/b/d" },

{ "op": "copy", "from": "/a/b/d", "path": "/a/b/e" }

]

Response (successful PATCH):
HTTP/1.1 204 No Content

Content-Location: /file.txt

ETag: "e0023aa4f"

PATCH method on resource /my/data

Conditional update avoiding

conflicting updates from different

clients.

If-Match field instructs the server

to perform the partial update only if

the resource did not change since

the client last accessed the resource.

Specification of patch format in

HTTP body (JSON Patch in this example)

Sequence of patch operations in

HTTP request body.

JSON PATCH format (RFC6902) in this

example.

Return code 204 indicates success

New ETag value may be used in

subsequent PATCH requests for

conditional updates

http://www.rfc-editor.org/rfc/rfc5789.txt
http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc6902

© Peter R. Egli 2017
22/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

7. HTTP 1.0 versus HTTP 1.1

 HTTP 1.0:

In HTTP 1.0 a new TCP connection for each entity (each page, each picture,

each sound file, Java applet etc.) is established. Up to 5 or even 10 connections are

open during web server accesses.

Faster display (browser could start to display many entities (objects) at the same time).

Eats up precious server resources and ports (10 open connections per client).

HTTP sessions usually short so TCP seldom gets past slow start phase, thus data transfer

is not optimal.

 HTTP 1.1:

Client can request (and usually does) server to leave TCP connection open (save resources).

Requests (GET) are still self-contained and repeatable.

This allows the client to do pipelining: send multiple requests (for multiple resources) in a row

without waiting for the first resource to arrive completely. This makes best use of TCPs flow

control (send window opens up) and thus improves performance.

 Examples 1.0 versus 1.1:

M$ IE Internet OptionsAdvancedUse HTTP 1.1

Load http://www.film.com/ with HTTP 1.0 and HTTP 1.1 (clear cache before loading page).

http://www.film.com/

© Peter R. Egli 2017
23/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

8. HTTP Authentication (1/2)
RFC2617 defines 2 authentication mechanisms (Basic and Digest) based on the Authorization

header defined in RFC2616.

The HTTP Authorization header is extensible so any authentication mechanism is possible

including proprietary schemes.

a. Basic authentication (RFC2617)

Basic authentication is a challenge-response mechanism that transfers credentials (username

and password) in clear text.

For hiding the password HTTPs (TLS) can be used.

GET /resource.html HTTP/1.1

Host: www.example.com
1

Client Server

401 Unauthorized

WWW-Authenticate: Basic realm="My data"
2

GET /resource.html HTTP/1.1

Host: www.example.com

Authorization: Basic QZdhjsIUYCWQoslfj==

3 Response with username

and password

base64 encoded

Challenge

http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2617.txt

© Peter R. Egli 2017
24/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

8. HTTP Authentication (2/2)
b. Digest access authentication (RFC2617)

Digest access authentication does not require encryption (via HTTPs) to protect the password.

The credentials are hashed to prevent eavesdropping.

GET /resource.html HTTP/1.1

Host: www.example.com
1

Client Server

401 Unauthorized

WWW-Authenticate: Digest realm="My data",

qop="auth"

nonce="7bde5298a0c9d3337ff5109",

opaque="26ef7609ad254183bc2d74"

2

GET /resource.html HTTP/1.1

Host: www.example.com

Authorization: Digest username="Robert",

realm="My data",

nonce="7bde5298a0c9d3337ff5109",

uri="resource.html",

qop=auth,

nc=00000001,

cnonce="7af4319b2d8af964537",

response="51fd7a49850b37af1984",

opaque="26ef7609ad254183bc2d74"

3

Response=hash(method,path,

realm,nonce,opaque,qop,

nc,cnonce,username,password)

http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.example.com/

© Peter R. Egli 2017
25/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (1/20)
 Pure HTML pages are static and do not provide ways to generate content dynamically and

depending on user input (interactivity). Browser (client side) and server vendors (server side)

added features that overcome this lack of interactivity.

a. Server side technologies:

CGI Common Gateway Interface (scripting)

JSP Java Server Pages (Java code embedded in HTML pages)

Java Servlets (Java code)

ASP Active Server Pages (scripting)

PHP Hypertext Preprocessor (scripting)

SSI Server Side Includes (scripting)

ESI Edge Side Includes (on caching proxy)

b. Client side technologies:

Javascript (scripting)

Java applets (executables)

Plugins (executables)

Helper applications (executables)

Cookies

Hidden form fields

c. Combined client & server side technologies:

AJAX

© Peter R. Egli 2017
26/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

1. User fills in form (HTML <form>).

2. Browser sends form data as POST or GET request to web server.

3. Web server hands user data and script code that is embedded in
HTML to script execution engine.

4. Script executes (database access, call other programs etc.).

5. Data is received from database (or from other application).

6. Script composes web page on-the-fly containing retrieved data.

7. Web server sends back composed page to browser.

8. Browser displays web page.

9. Active web, stateful web (2/20)
 General model for server side dynamic page generation:

JSP/servlets: Apache Tomcat mySQL/JDBC

ASP: IIS IIS script engine mySQL

CGI: Apache/IIS Perl/C interpreter div.

PHP: Apache PHP interpreter mySQL

Web

Server

Code

Execution

Engine

Browser

1

8

2

7

4

5

3

6

App.DB

Static web pages

with ‚links‘ to script code

Display

© Peter R. Egli 2017
27/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (3/20)
 CGI Common Gateway Interface (server side scripting) (1):

CGI is an early and still widely used technology for dynamic web pages.

The Server communicates with Perl or C scripts via environment variables and stdin/stdout.

Web

Server
Browser

Submit button POST script.pl
Display

HTML page

1 2 3
Perl / C

interpreter

in own

process

(perl.exe)

‚stdin‘ and

env-vars

‚stdout‘

6

4

78

App.DB

1. User presses submit button in HTML form page.

2. Browser packs form data into POST (or GET) request and sends it to server.

3. Server sets environment variables, writes form data to server‘s stdout and starts script.

4. Script reads request by reading environment variable $ENV{'QUERY_STRING'} (GET request) or by reading

from stdin via read(STDIN,$in,$ENV{'CONTENT_LENGTH'}) (POST/PUT request). The script does what it is

supposed to do (database access etc.).

5. Script receives data from database etc.

6. The script writes the result (full HTML page) to stdout.

7. Web server reads from stdin (coupled to stdout of script process) and sends HTML page to the browser.

8. Browser displays newly created HTML page.

Remark: stdin/stdout are standard file handles (always present) for applications to read from keyboard and write

to display (JavaSystem.out.println(„hello“)). stdin and stdout are often used to connect processes.

5

© Peter R. Egli 2017
28/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (4/20)
 CGI Common Gateway Interface (2):

Environment variables are used for passing data/parameters between HTTP server and

CGI script. Examples of environment variables used by CGI:

QUERY_STRING The information which follows the ? in the URL which referenced this script.

This is the query information. It should not be decoded in any fashion.

This variable should always be set when there is query information, regardless

of command line decoding.

CONTENT_LENGTH The length of the said content as given by the client.

REQUEST_METHOD The method with which the request was made.

For HTTP, this is "GET", "HEAD", "POST", etc.

SERVER_PORT The port number to which the request was sent.

PATH_INFO The extra path information, as given by the client. In other words, scripts

can be accessed by their virtual pathname, followed by extra information at the

end of this path. The extra information is sent as PATH_INFO. This information

should be decoded by the server if it comes from a URL before it is passed to

the CGI script.

REMOTE_HOST The hostname making the request. If the server does not have this information,

it should set REMOTE_ADDR and leave this unset.

REMOTE_ADDR The IP address of the remote host making the request.

CGI pros/cons:

CGI is very simple.

CGI is stateless (no support for multistep transactions).

CGI has high overhead: program/executable invocation for each request (separate process

for each HTTP request, even if the scripts to be executed are the same!).

CGI scripts are executed in standard OS shell (security problems).

© Peter R. Egli 2017
29/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (5/20)
 JSP Java Server Pages (1):
The JSP page functions as servlet ‚front-end‘ (static HTML code with ‚entry points‘ into Java servlet code).

In principle all HTML formating can be packed into Java code (pure servlet). It is at the discretion of the

designer to split the functionality into static HTML pages (JSP) and dynamic servlet code. Naturally the static

part will be implemented as HTML pages (done by web designer) and the dynamic part implemented as

servlets (done by a Java programmer).

JSPs are an alternative to CGI. JSP is similar to CGI (see above) but the capabilities of JSP are much more

powerful (basically all funtionality that Java offers). Akin to CGI JSP allows to mix static HTML code with

dynamically generated HTML code (generated by Java code). But JSP allows to separate the HTML code

(format) from the content (data) in a cleaner way than CGI does.

JSP is also more efficient than CGI since the code is executed in a thread instead of a separate process (less

overhead).

Web

ServerBrowser

getDate()
Servlet

Engine

(Tomcat)

http://host/page.jsp GET /page.jsp
Display

HTML page

Servlet

+getDate()

...

<h2>JSP</h2>

<%Servlet.getDate();%>

<p>blabla</p>

...

Store with HTML

pages

© Peter R. Egli 2017
30/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (6/20)
 JSP Java Server Pages (2):

JSP code in HTML pages is enclosed in <% ...%> tags.

Simple JSP example (JSP code marked red): HTML page as it is sent to browser:

<html>

<head>

<meta name="author" content="pegli">

<title>

</title>

</head>

<body bgcolor=#00ffff>

<% out.println("<h2>Client IP:port is:</h2>"); %>

<h1><%= request.getRemoteHost() + ":" +

request.getRemotePort() %>

</h1>

</body>

</html>

<html>

<head>

<meta name="author" content="pegli">

<title>

</title>

</head>

<body bgcolor=#00ffff>

<h2>Client IP:port is:</h2>

<h1>127.0.0.1:4499</h1>

</body>

</html>

© Peter R. Egli 2017
31/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (7/20)
 Java Servlets (1):
The Java servlet engine (servlet runtime environment) provides the following facilities:

1. Parse and decode HTML form data.

2. Reading and setting HTML headers.

3. Handling cookies.

4. Tracking sessions.

N.B.: Java Servlets are not server side scripts but must be compiled (javac) before they can be called.

The servlet engine (e.g. Tomcat) instantiates each servlet class once but creates a new temporary thread for

each new HTTP GET request; the thread executes the doGet() method that each servlet class must

implement (the servlet extends HttpServlet class and has to implement the doGet() method). Once the GET

request has been serviced the doGet() method completes and the thread is terminated (‚run to completion‘).

The HTTP request (input argument) and HTTP response (output argument) are passed to the servlet as
objects: doGet(HttpServletRequest request, HttpServletResponse response).

Web

Server
Browser

OtherServlet

+doGet()

doGet() doGet() doGet()

Servlet

Engine

(Tomcat)
MyServlet

+doGet()

http://host/MyServlet GET MyServlet
Display

HTML page

© Peter R. Egli 2017
32/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (8/20)
 Java Servlets (2):
HTTP is stateless, i.e. there is no session (there is only an underlying TCP connection that lives for some

seconds and then goes away). A session represents the current status of the relationship between client and

web server including the current state of user data (username etc.). How can a session be controlled for pages

like shopping sites (‚shopping cart‘) where the web server needs to remember what the user placed in the

shopping cart?

Session tracking solution 1: Use cookies:
Servlet can place a cookie on the client (browser) via Cookie class.
Cookie userCookie = new Cookie(„user“,“uid123456“); //add parameter user=uid123456

response.addCookie(userCookie); //add cookie to HTTP response header

The next time the user accesses the same page the browser sends the cookie back to the server (HTTP header
field Cookie:).

Browser

Servlet

GET server.com/Servlet

HTML page

Set-Cookie: user=uid123456

Get server.com/Servlet

Cookie: user=uid123456
Servlet

C

Cookie c = new Cookie(„user“,

“uid1234“);

response.setCookie(c);

Cookie c[] = request.getCookies();

String s =

ServletUtilities.getCookieValue(

c,“user“,NO_VALUE);

Web

Server

© Peter R. Egli 2017
33/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (9/20)
 Java Servlets (3):

Session tracking solution 2: URL rewriting:

URL rewriting appends the session tracking information to the URL using GET-style encoding or extra path.

a. GET-style encoding:

Servlet creates pages with links (URLs) and appends parameter/value pairs to the URLs as follows:

http://host/MyServlet?sessionid=76DHZ67564JH9K95

The servlet engine extracts the parameters and makes them available to the servlet via the

request.getParameter() method.

b. Extra path information:

Session IDs (and other parameters) can also be appended to the URL in so-called extra path notation:
http://host/MyServlet/sessionid/76DHZ67564JH9K95

The servlet engine still invokes MyServlet but makes the extra path (sessionid/76DHZ67564JH9K95)

available through the request.getExtraPath() method.

Browser

Servlet

GET server.com/Servlet

HTML page with forms

GET http://host/MyServlet

?sessionid=76DHZ67564JH9K95
Servlet

String val =

request.getParameter(

„sessionid“);

Web

Server

© Peter R. Egli 2017
34/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (10/20)
 ASP Active Server Pages:

ASP is Microsofts technology for dynamic web pages. The ASP model is very similar to the

JSP model.

ASP uses Visual Basic or JavaScript (Microsofts JScript = ECMA262 standard) as script

language. Script code is embedded into HTML pages with <%...%> tags (like JSP).

ASP runs on IIS (Internet Information Server, Microsofts web server).

Simple ASP example (ASP code marked red): HTML page as it is sent to browser:

<%@ Language=VBScript %>

<html>

<head>

<title>Example ASP page</title>

</head>

<body>

<%FirstVar = "Hello world!"%>

The time is: <%=time%>

<%FOR i=1 TO 10%>

<%=FirstVar%>

<%NEXT%>

</body>

</html>

<html>

<head>

<title>Example ASP page</title>

</head>

<body>

The time is: 13:30:07

Hello World

....

Hello World

</body>

</html>

© Peter R. Egli 2017
35/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (11/20)
 PHP (PHP: Hypertext Preprocessor) (server side scripting):

PHP is a script language executed on server by script module. Script code is embedded into

HTML pages and executed on-the-fly before the page is delivered to the client. The client

(browser) does not ‚see‘ PHP code since the code is executed on the server and its output

embedded into the HTML page.

PHP code is enclosed in <? ...?> tags (or alternatively in <?php...> tags).

Simple PHP example (PHP code marked red): HTML page as it is sent to browser:
<?php

$title="My first PHP script."

?>

<html>

<head>

<meta name="author" content="pegli">

<?php include("lang/en.php");?>

<title>

<?=$TEXT['global-xampp'];?>

<?php include('.version');?>

</title>

</head>

<body bgcolor=#ffffff>

<h1><?php echo($title)?></h1>

<h2>Your browser is:</h2>

<?php echo $HTTP_USER_AGENT;?>

</body>

</html>

<html>

<head>

<meta name="author" content="pegli">

<title>

XAMPP for Windows

Version 1.4.2

</title>

</head>

<body bgcolor=#ffffff>

<h1>My first PHP script.</h1>

<h2>Your browser is:</h2>

Mozilla/4.0 (compatible; MSIE 6.0;...

</body>

</html>

© Peter R. Egli 2017
36/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (12/20)
 SSI Server Side Includes (1):
SSI are directives (commands) placed inside HTML. These directives are executed on the server when the

page(s) are served. SSI is better suited for adding small pieces of dynamically generated information to

pages that otherwise are static (example: hit-counter).

SSI HTML pages usually have a suffix .shtml. This tells the web server (e.g. Apache) to inspect the page and

execute the SSI directives.

SSI directives syntax (uses SGML comment syntax):

<!--#element attribute=value attribute=value ... -->

SSI directives (examples):

<!--#echo var="DATE_LOCAL" --> Today‘s date.

<!--#flastmod file="index.html" --> Include date of last modification of page.

<!--#include virtual="/cgi-bin/counter.pl" --> Include hit-counter.

<!--#include virtual="/footer.html" --> Include standard footer.

<!--#exec cmd="ls" --> Execute a command such as ls (directory

listing; use with utmost care!).

<!--#set var="name" value="Rich" --> Setting a variable for later use.

Web

ServerBrowser

http://host/page.shtml GET /page.shtml
Display

page.shtml

...

<h2>SSI</h2>

<!--...-->

<p>bla</p>

...

Store with HTML

pages

Execute SSI and

embed result in

HTML page.

© Peter R. Egli 2017
37/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (13/20)
 SSI Server Side Includes (2):

SSI directives HTML pages are enclosed in <!-- ...--> tags.

Simple SSI example (SSI code marked red): HTML page as it is sent to browser:

<html>

<head>

<meta name="author" content="pegli">

<title>

</title>

</head>

<body bgcolor=#00f080>

<h1>SSI SSI Example Page</h1>

<h2>

<!--#config timefmt="%A %B %d, %Y" -->

Today is <!--#echo var="DATE_LOCAL" -->

</h2>

</body>

</html>

<html>

<head>

<meta name="author" content="pegli">

<title>

</title>

</head>

<body bgcolor=#00f080>

<h1>SSI SSI Example Page</h1>

<h2>

Today is Tuesday November 16, 2004

</h2>

</body>

</html>

© Peter R. Egli 2017
38/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (14/20)
 ESI Edge Side Includes:

Web pages often contain static content (cacheable) and dynamic content (non-cacheable).

In ESI, a proxy (e.g. reverse proxy, see below) performs the processing of ESI tags in HTML

pages. The web server creates the web page including dynamic content but leaves ESI tags

untouched. These are processed by an ESI processor on the reverse proxy (the content

addressed by ESI tag is retrieved from a cache).

Web Client

Reverse

Proxy

<html>

<head>

<meta name="author" content="pegli">

<title>My Page</title>

</head>

<body bgcolor=#ffffff>

<h1>Hello World</h1>

…

<p>In case of problems I am not to

blame!</p>

</body>

</html>

Cache

containing

disclaimer.html

page.

html

page.

html

HTTP request

for page.html

HTTP request

for page.html

<html>

<head>

<meta name="author" content="pegli">

<title>My Page</title>

</head>

<body bgcolor=#ffffff>

<h1>Hello World</h1>

…

<esi:include src="disclaimer.html"

onerror="continue"/>

</body>

</html>

page.html with

ESI tag(s)page.html
Web

Server

(farm)

© Peter R. Egli 2017
39/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (15/20)
 JavaScript (Client side scripting):

JavaScript is a script language executed on

the client by web browser.

JavaScript is embedded into HTML page with

<SCRIPT></SCRIPT> tags.

JavaScript has many high-level programming

features like:

• variables (types boolean, numeric, string)

• arithmetic, logical and bitwise operators

• for() and while() control loops

• functions

JavaScript has limited access to the machine

it is running on (security restrictions).

Usage of static HTML pages with embedded

Javascript along with style sheets

(CSS) is called DHTML (Dynamic HTML).

N.B.: JavaScript has nothing to do with Java,

i.e. it‘s not a stripped down Java version!

Page with JavaScript example:

© Peter R. Egli 2017
40/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (16/20)
 Java applets (client side executable code):

Java applets are executed in client web browser context (Java Runtime Environment as

browser plugin). The browser hands over control of a specific area in web page to applet

(applet produces graphical output).

The Java applet can access the outside world (file system, network) only when user grants

according access rights (security). Network access is restricted to the server from which the

applet was loaded.

Due to security issues with Java in the browser, applets should not be used anymore.

Web Server

Web Browser

Java VM

Applet Applet
HTML code snippet:
<APPLET CODE=“tictactoe.class" WIDTH="400" HEIGHT="200">

<PARAM NAME="SPEED" VALUE="100">

<PARAM NAME="IMAGE1" VALUE="thisimage.gif">

<PARAM NAME="IMAGE2" VALUE="thatimage.jpg">

</APPLET>

JAVA applets use only two types of HTML tags -- both easy to

deal with.

The <APPLET> tag basically just tells the browser what

applet.class

the applet should be.

There are additional (optional) attributes you can set up, too;

but

tag, and usually all you will need.

The <PARAM> tag is likewise simple -- it NAMES a parameter

provides a VALUE for that parameter.

© Peter R. Egli 2017
41/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (17/20)
 Client side plugins and helper applications:

a. Plugins:

Plugins are small applications linked into browser at run-time (e.g. Flash). They run in the

browser‘s process.

b. Helper applications:

Helper applications are standalone applications that are started by browser on request,

e.g. audio / video streamer. Helper applications run in their own process and are able to run

without browser.

© Peter R. Egli 2017
42/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (18/20)
 Cookies (RFC2109):

HTML header field „Set-cookie:“ instructs browser to store information on source and content.

When browser visits the web page the next time it sends an HTML header with a „Cookie:“

field with the value = stored cookie.

Cookies are not programs but only static data that is stored/sent along with web pages.

Session cookie: Exists as long as surfing session (e.g. web shopping session). Stores info

about items in the shopping cart. Session cookies go away as soon as the web session is

closed (browser closed).

Persistent cookie: Used to recognize a user, e.g. for remembering the username and password

(cookies with expiration date are persistent).

Supports any type (non-text too).

Scales better since the job of storing information is offloaded to the client.

 Hidden fields:

Hidden fields are HTML form fields tagged with the HIDDEN attribute.

They allow to shuffle back and forth (invisibly) embedded state information (without cookies).

Simple, no cookies required.

Applicable only to text/html type.

Example: http://www.htmlcodetutorial.com/forms/_INPUT_TYPE_HIDDEN.html

http://www.htmlcodetutorial.com/forms/_INPUT_TYPE_HIDDEN.html

© Peter R. Egli 2017
43/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (19/20)
 AJAX – Asynchronous Javascript + XML (1):

Traditional web application model:

a. „Click, wait and refresh“: Web client (browser) requests a page (GET, POST), waits for

the response (HTML page) and eventually displays the new page.

b. Synchronous requests: It‘s always the client (browser) initiating the request while the

server merely responds to such requests (one-way requests and responses).

This makes the protocol simple but difficult to use for interactive applications.

Server side

processing

Click

Refresh

display

Browser

GET / POST

Web

Server
Wait

HTML page

© Peter R. Egli 2017
44/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

9. Active web, stateful web (20/20)
 AJAX – Asynchronous Javascript + XML (2):

AJAX model:

a. Partial UI updates: The requested HTML page contains Javascript code that can load

data (XML encoded) from the server asynchronously (independent of user actions). The

Javascript code uses an additional component (AJAX engine) in order to access the

server (AJAX engine basically adds XMLHttpRequest object to Javascript).

b. Asynchronous updates: The Javascript may access the server asynchronously thus

decoupling user interaction from server interaction. The user can continue to use the

GUI/application while the Javascript accesses the server in the background. Upon

reception of new information only the affected part of the GUI is updated.

Server side

processing

Click

Refresh

display

Browser

GET / POST

Web

Server

A
J

A
X

 e
n

g
in

e HTML page w. Javascript

XMLHttpRequest

XML data

XMLHttpRequest

XML data

Click

Asynchronous AJAX requests (issued by Javascript code) and responses

with XML encoded data.

Demo: http://www.pushlets.com/pushlet/examples/ajax/ajax-1.html

http://www.pushlets.com/pushlet/examples/ajax/ajax-1.html

© Peter R. Egli 2017
45/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (1/6)
 Web caching purpose and web caching hierarchy:
Web caching means that the client or caching server (proxy) retrieves the requested page from a local storage (if present) in

order to:

1. Reduce latency (increase responsiveness)

2. Reduce traffic (traffic source is closer to traffic sink = client)

Companies (enterprises) set up proxies for controlling access to the network (ban / allow sites) and may combine it with a

cache.

 ISPs (Internet Service Providers) set up proxy caches to reduce traffic (main objective). Hit rate (page retrieval from cache

instead source server) can reach 50%!

 Web site hosters make use of CDNs (Content Delivery Networks) to deliver content (web pages) faster from

locations closer to the requesting client (using anycast routing, DNS-based request routing, HTML rewriting etc.).

 At the final web server location reverse proxies distribute the load over a battery of web servers (load balancing).

Enterprise Caching

Proxy Server

(=Forward Proxy)

S C

TCP Connection

HTTP session

Web Server

(farm)

www.zhaw.ch

S

TCP Conn.

HTTP session

HTTP Request

HTTP Response

Web Client

Local web

cache (browser

cache)

C

ISP Caching

Proxy

(=Forward Proxy)

S C

TCP Conn.

HTTP session

Web caches

S C

TCP Conn.

HTTP session

CDN

Reverse

Proxy

© Peter R. Egli 2017
46/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (2/6)
 How it works:

Cache validators in the HTML header specifiy if and how a page is to be cached (header fields
Cache-Control, Expires, Last-Modified, ETag).

Every web object (or element) such as pages, images etc. is cached or not cached according

to the following rules:

1. If HTTP header tell cache not to keep the object, the cache won‘t (‚no-cache‘).

2. If no validator is present the cache will mark the object as uncacheable.

3. A cached object is considered fresh (able to be sent to the client without checking with

the origin server) if:

* It has an expiry time or other age-controlling directive set,

and is still within the fresh-period.

* If a browser cache has already seen the object, and has been set to

check once a session.

* If a proxy cache has seen the object recently, and it was

modified relatively long ago.

4. If an object is stale, the origin server will be asked to validate the object, or tell the

cache whether the copy that it has is still good (validation).

A fresh object will be sent immediately to the browser.

A validated object will avoid sending the object again.

© Peter R. Egli 2017
47/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (3/6)
 How to control web caches:

1. Use HTML meta tags:
<META http-equiv="Pragma" content="no-cache">

Problem: such meta tags are often only honored by browser caches, but not by proxy caches.

2. Use ‚Expires‘ HTTP header field:
HTTP/1.1 200 OK

Date: Fri, 30 Oct 1998 13:19:41 GMT

Server: Apache/1.3.3 (Unix)

Cache-Control: max-age=3600, must-revalidate

Expires: Fri, 30 Oct 1998 14:19:41 GMT

Content-Length: 1040

Content-Type: text/html

E.g. Expires field can be set to the time when usually updates are made to web pages.

Problem: ‚Expires‘ field requires client and server to have same absolute time base (date,

time). Sometimes clients do not have correct absolute time (GMT Greenwich Mean Time), e.g.

small network appliances. Additionally time zone corrections and summertime make usage

of this field more difficult.

© Peter R. Egli 2017
48/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (4/6)
 How to control web caches (cont‘d):

3. Use ‚Cache-Control‘ HTTP header field with ‚max-age‘:
HTTP/1.1 200 OK

Date: Fri, 30 Oct 1998 13:19:41 GMT

Server: Apache/1.3.3 (Unix)

Cache-Control: max-age=3600, must-revalidate

Content-Length: 1040

Content-Type: text/html

‚max-age‘=[seconds] specifies the maximum amount of time that an object will be considered fresh. Similar to Expires, this

directive allows more flexibility. [seconds] is the number of seconds from the time of the request you wish the object

to be fresh for.

‚s-maxage‘=[seconds] is similar to max-age, except that it only applies to proxy (shared) caches.

‚public‘ marks the response as cacheable, even if it would normally be uncacheable. For instance, if the pages are

authenticated, the public directive makes them cacheable.

‚no-cache‘ forces caches (both proxy and browser) to submit the request to the origin server for validation before releasing

a cached copy, every time. This is useful to assure that authentication is respected (in combination with public),

or to maintain rigid object freshness, without sacrificing all of the benefits of caching.

‚must-revalidate‘ tells caches that they must obey any freshness information you give them about an object. The HTTP allows

caches to take liberties with the freshness of objects; by specifying this header, you're telling the cache that you want

it to strictly follow your rules.

‚proxy-revalidate‘ similar to ‚must-revalidate‘, except that it only applies to proxy caches.

© Peter R. Egli 2017
49/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (5/6)
 How to control web caches (cont‘d):

4. Use validators/validation:

In response header:
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT

In new request header:
If-Modified-Since: Mon, 29 Jun 1998 02:28:12 GMT

If present the „Last-Modified“ header field tells when the object (file, page) was last modified. This

header field is stored in the cache along with the page / object it belongs to.

When the cache has an object with Last-Modified header it can use it to ask the server if the object has

changed since the last time it was seen with a If-Modified-Since header field.

If the object has not changed the server will not return the object and the client will retrieve the object from

the cache.

Client Server

GET /file.html

GET Response

Last-Modified: 29 Jun ...

file.html

GET /file.html

If-Modified-Since: 29 Jun ...

304 Not Modified

© Peter R. Egli 2017
50/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

10. Web caching (6/6)
 How to control web caches (cont‘d):

5. Use ETag validators/validation:

ETag = simple hash value of requested page; if a page changes its hash value changes too.
In response header:

ETag: 115ff0-488

In new request header:

If-None-Match: 115ff0-488

GET /file.html

GET Response
ETAg: 115ff0-488

file.html

GET /file.html
If-None-Match: 115ff0-488

304 Not Modified

ETag is a unique tag generated each time an object is changed (or created). The server

performs only a full match on ETags.

Cache directive conflict: in case of conflict of multiple cache control directives the most

restrictive is taken, i.e. the one that is most likely to preserve semantic transparency.

Client Server

© Peter R. Egli 2017
51/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

TCP

IP/DL/PL

HTTP

server

Server

Process

11. Web audio/video streaming (1/3)
A. Conventional design:

1. Web browser requests HTML page with MP3 content (Content-Type: audio/mp3).

2. Web browser receives entire audio/video file.

3. Web browser starts helper app. (MP3 player) and starts passing video packets/frames to it.

4. Audio player decompresses the frames and plays them back.

TCP

IP/DL/PL

HTTP

client

Browser

TCP connection

Transport

Network

Audio

Media

Player

Simple design.

Long delays (multimedia files must first

be received in their entirety (long delay)).

Alternative: media player has HTTP engine to load

media files directly from server.

Video

Media

Player

© Peter R. Egli 2017
52/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

11. Web audio/video streaming (2/3)
B. Using Streaming Server with RTSP RFC2326 (1):

The browser starts the media player and passes it a URL from where to stream media. The

media player then opens an RTSP session to the media server, starts streaming (download) the

media file and plays the content back (playback while streaming).

TCP

IP/DL/PL

HTTP

client

Browser
Media

Player

RTSP

TCP

IP/DL/PL

HTTP

server

Web

Server

Proc.

Port 80

TCP Connection

HTTP session

TCP

IP/DL/PL

HTTP

server

Streaming

Server

Port 554

HTML pages A / V files

TCP Connection

RTSP A / V Stream

Playout

buffer

© Peter R. Egli 2017
53/53

Rev. 4.20

HTTP – HTML - Web peteregli.net

11. Web audio/video streaming (3/3)
B. Using Streaming Server with RTSP RFC2326 (2):

1. User clicks on video/movie/audio link.

2. Browser sends HTTP GET request for video/movie/audio file to web server.

3. Web server responds with a meta file containing information on requested file

(media type).

4. The browser determines from Content-type: field in the meta file the media player

(helper application) to invoke and passes the contents of the meta file to it (e.g. RealPlayer).

5. The media player reads the URL from the meta file (streaming server) and sends an

RTSP SETUP message to the streaming server (start a new streaming session).

6. After some negotiation the streaming server responds with an RTSP 200 OK message.

7. The server starts sending audio / video frames encapsulated in RTSP.

8. The media player first fills its playout buffer until it is sufficiently full to prevent

playout underruns.

9. Media player starts playing out audio / video from playout buffer.

10. Audio / Video stream is controlled by media player with RTSP COMMANDS:

RTSP PLAY instruct server to start sending audio / video (or resume sending)

RTSP PAUSE instruct server to (temporarily) stop sending audio / video stream

RTSP TEARDOWN stop RTSP session

