
© Peter R. Egli 2017
1/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

Peter R. Egli
peteregli.net

OVERVIEW OF WEB BASED
SERVER PUSH TECHNOLOGIES

COMET, HTML5
WEBSOCKETS

© Peter R. Egli 2017
2/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

Contents
1. Server push technologies

2. HTML5 server events

3. WebSockets

4. Reverse HTTP

5. HTML5 overview

© Peter R. Egli 2017
3/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (1/7)
Problem:

HTTP does not provide full bidirectional connections between client and server.

HTTP is a request-response protocol. Asynchronous messages from the HTTP server to the

client (server push) are not directly possible.

HTTP was intentionally designed as a simple request-response protocol.

This request-response scheme makes the server implementation simple, i.e. the server is

stateless and thus does not have to maintain session state for each client.

Over time different work-around techniques /solutions emerged to overcome this 'limitation' of

HTTP.

HTTP GET / POST

HTTP Response

HTTP message

Every message from the server to the

client requires a request beforehand.

The HTTP protocol does not allow

sending unsolicited messages from the

server to the client.

HTTP client HTTP server HTTP client HTTP server

© Peter R. Egli 2017
4/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (2/7)
Overview of solutions for server-push (1/3):

Server

push

solutions

A. Multiple

HTTP

connections

B. Comet

programming
(umbrella term)

C. Solutions

with

HTML5

B.1.1

Streaming +

hidden iframe

B.1.2

Streaming

with XHR

B.1

Streaming

B.2

Long polling

B.2.1

XHR

long polling

B.2.2

Script tag

long polling

C.1

HTML5

server sent

events (SSE)

C.2

WebSockets

The client opens an HTTP connection

to the server, the server opens a

connection to the client.

Example: XMPP BOSH protocol.

Only for server

client events (is

not bidirectional).

Full bidirectional

connection

between

client and server.

Browser

dependent

behavior.

Browser

dependent

behavior.

No X-site

scripting (not

possible to access

another server).

Complicated

implementation.

Complicates server impl.

© Peter R. Egli 2017
5/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

Web server

1. Server push technologies (3/7)
B.1.1 Streaming with hidden iframe (aka «forever frame»)

The HTML page contains a hidden IFRAME element.

This IFRAME element is filled with a chunked HTML page (the page is thus indefinitely long, the

server can asynchronously send updates to the client).

The server updates contain HTML script tags with Javascript code that are asynchronously

executed on the client.

HTML page

<IFRAME style=

"display:none;">

<script>

…

</script>
Web server

Browser / web client

<script>

…

</script>

<script>

…

</script>

Javascript

engine

© Peter R. Egli 2017
6/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (4/7)
B.1.2 Streaming with XHR

The XMLHttpRequest object in Javascript provides access to the HTTP connection in the client.
When a message arrives, the Javascript engine calls the onreadystatechange function.

Web server

HTML page

data

(e.g.

XML)
Web server

Browser / web client

data

(e.g.

XML)

data

(e.g.

XML)

Javascript

engine

<script>

xxx

</script>

<script language="Javascript">

function update() {

self.xmlHttpRequest.onreadystatechange = function() {

//to XML data processing here

//access to XML: self.xmlHttpReq.responseXML

}

}

</script>

© Peter R. Egli 2017
7/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (5/7)
B.2.1 XMLHttpRequest with long polling

The client sends requests through the XMLHttpRequest Javascript object.

After each response, the client "rearms" the polling by sending a new request.

B.2.2 Script tag long polling:
Same techniques as above, but the script code is embedded in <script> tags that can be

filled with code from another second level domain.

Possible across different second level domains (X-site scripting), but poses a security problem.

HTTP request (XMLHttpRequest)

HTTP Response
An event on the server (data changed)

requires the server to send an

asynchronous update to the client.

T

HTTP request (XMLHttpRequest)Client (script) immediately

"rearms" the polling by

sending a new request.
T

HTTP Response

HTTP request (XMLHttpRequest)

Another server-side event

HTTP client HTTP server

© Peter R. Egli 2017
8/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (6/7)
C.1 HTML5 server sent events (SSE):

HTML5 server sent events (SSE) are similar to web sockets. SSE allow the server to

asynchronously send data to the client.

SSE differ from web sockets in that they only allow serverclient communication.

Web server

HTML page

event data

(e.g.

JSON)
Web server

Browser / web client

event data

(e.g.

JSON)

event data

(e.g.

JSON)

Javascript

engine

<script>

xxx

</script>

<script language="Javascript">

var source = new EventSource('/serverevents/talk');

source.onmessage = function() {

document.getElementById('content').innerHTML += e.data

+ '
';

}

}

</script>

© Peter R. Egli 2017
9/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

1. Server push technologies (7/7)
Higher layer protocols:
Higher layer protocols define commands and responses that can be used in a client-server application.

Examples:

1. Bayeux protocol (by Dojo foundation):

 Protocol on top of a comet-mechanism

supporting streaming & long-polling.

 Defines frames, commands and fields etc.

2. JSON-RPC:

 Protocol with 3 different message types that are mapped to HTTP: request, response, notification.

 Peer-to-peer protocol, both client and server can send asynchronous notifications.

 Different scenarios are possible:

Comet

HTTP

Bayeux

Comet

HTTP

Bayeux
Bayeux protocol

HTTP protocol

HTTP

JSON-RPC

HTTP

JSON-RPC Comet

HTTP

JSON-RPC

Comet

HTTP

JSON-RPC

Comet

HTTP

Bayeux

Comet

HTTP

Bayeux

JSON-RPC JSON-RPC

JSON-RPC directly on top of HTTP.

Fully bidirectional message

communication of JSON-RPC is

not possible.

Comet provides bidirectional

communication for JSON-RPC.

JSON-RPC messages are

mapped to Bayeux messaging

protocol.

© Peter R. Egli 2017
10/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

3. WebSockets (1/3)
History of HTML and WebSockets standards:
W3C WWW Council; official standards body for WWW standards.

WHATWG Web Hypertext Application Technology Working Group.

Community of people (not vendors) interested in evolving HTML.

Founded because the W3C XHTML WG was slow in making progress.

IETF Hybi IETF Hypertext Bidirectional WG. Responsible for WebSocket IETF draft / RFC.

1999

XHTML WG

WHATWG

HyBi

Published

W3C

standards

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2014

HTML

4.0

XHTML

1.0

XHTML

1.1

HTML5

Draft

HTML5

Final

Web

Appl. 1.0

XHTML2 WG
RIP

W3C HTML WG

WHATWG draft

adopted as

starting point
RFC6455

WebSocket standard

moved to HyBi

W3C HTML5

Recommendation

Oct. 28 2014

2011

http://www.whatwg.org/
http://www.rfc-editor.org/rfc/rfc6455.txt

© Peter R. Egli 2017
11/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

3. WebSockets (2/3):
The WebSocket protocol defines the procedures to upgrade a plain-vanilla HTTP-connection

to a fully bidirectional WebSocket transport connection.

The WebSocket Javascript API defines the functions that give access to the WebSocket layer.

• W3C is responsible for the WebSocket Javascript API standard.

• IETF is responsible for the WebSocket protocol standard.

• The WebSocket protocol standard is published as IETF RFC6455.

See also http://www.websocket.org/.

WebSocket

protocol

WebSocket

API
http://dev.w3.org/html5/websockets/

http://tools.ietf.org/html/rfc6455

Javascript

script

WebSocket

protocol

WebSocket

API

Service

process

http://www.websocket.org/
http://dev.w3.org/html5/websockets/
http://tools.ietf.org/html/rfc6455

© Peter R. Egli 2017
12/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

Server acknowledges to upgrade to WebSocket.

The server confirms acceptance for upgrading

with the Sec-WebSocket-Accept field.

Application protocol (WebSocket subprotocol) that

the server selects.

3. WebSockets (3/3):
WebSocket handshake procedure for upgrading an HTTP connection:

The client sends a normal HTTP GET request, but requests to upgrade to a WebSocket

connection. Afterwards the connection remains active until it is closed and the client and

server can exchange messages based on an application protocol.

Client  server request (example from http://tools.ietf.org/html/rfc6455):
GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Origin: http://example.com

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

ServerClient response:
HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxa…GzbK+xOo=

Sec-WebSocket-Protocol: chat

Upgrade to a WebSocket connection.

Security fields to protect the handshake

against man-in-the-middle attacks.

Application protocols that the client supports.

Standard HTTP method and Host field lines.

Field for protocol version checks.

http://tools.ietf.org/html/rfc6455

© Peter R. Egli 2017
13/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

4. Reverse HTTP (1/5):
Problem:

In many cases (embedded) clients are not accessible (visible) from the Internet because they

are in a private network or behind a firewall with NAT (Network Address Translation). Thus it is

impossible to connect to the embedded web server of such a device with a web browser from

outside the private network.

N.B.: The mobile or embedded devices are able to connect to the Internet (outgoing

connections are possible if permitted by the firewall).

Network with private IP

addresses (RFC1918)

such as a mobile provider

network or a LAN.

Web browser for

accessing embedded or

mobile device.

Public Internet

FW with

NAT

Mobile and

embedded

devices with

private IP

addresses

192.168.10.2

192.168.10.3

192.168.10.4

Public IP address

(visible to web

browser)

Private network

20.20.30.1

MN

MN: Mobile Node

NAT: Network Address Translation

LAN: Local Area Network

FW: Firewall

© Peter R. Egli 2017
14/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

4. Reverse HTTP (2/5):
Solution 1: VPN

Through VPNs both the devices and the web browser are hooked into the same (private)

network (172.16.1.0/24 in the example below).

Provides security if combined with authentication and encryption.

More complex installation. Requires a VPN client on the devices.

Increased performance requirements on clients and servers (encryption, VPN protocol).

Solution 2: Port Forwarding

NAT firewall forwards port 80 to 192.168.10.2.

No additional gear required.

NAT firewall must be under control for adding the port forwarding rule.

Security concerns (open port).

LAN

172.16.1.0/24
Internet Private

network

172.16.1.2

20.30.40.50

VPN server

with public

IP address

30.20.30.1
192.168.10.2

172.16.1.3

LAN

172.16.1.0/24 Internet
Private

network

172.16.1.2

30.20.30.1

192.168.10.2

80

Device 'dials'

into VPN.

The Firewall forwards

requests to port 80 on the device.

MN

MN

FW with NAT

FW with NAT

© Peter R. Egli 2017
15/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

4. Reverse HTTP (3/5):
Solution 3: Reverse HTTP (1/3)

Reverse HTTP is an experimental protocol (see IETF draft http://tools.ietf.org/html/draft-

lentczner-rhttp-00) that allows HTTP client and server to switch roles (client becomes server and

vice versa). The firewall lets the packets pass since the mobile node opens the connection.

During connection setup, HTTP client and server switch roles (client becomes server and vice

versa).

No VPN required (security could be satisfied with HTTPs).

Can be combined with WebSockets or COMET protocols (see above) for server push.

Reverse HTTP proxy required (there are open source solutions such as yaler.org).

LAN

172.16.1.0/24
Internet Private

network

172.16.1.2

Reverse HTTP

proxy somewhere

in the Internet

30.20.30.1
192.168.10.2

20.30.40.50

MN
FW with NAT

http://tools.ietf.org/html/draft-lentczner-rhttp-00
http://www.yaler.org/

© Peter R. Egli 2017
16/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

4. Reverse HTTP (4/5):
Solution 3: Reverse HTTP (2/3)

Message flow:

Browser Proxy MNFirewall

Register address:
POST /dev42 HTTP/1.1

Upgrade: PTTH/1.0

Connection: Upgrade

Host: devices.net

1

Proxy response:
HTTP/1.1 Switching Protocols

Upgrade: PTTH/1.0

Date: Sat, 10 Sept. 2011

Content-Length: 0

2

Proxy forwards request:
GET /dev42/res HTTP/1.1

Host: devices.net

4

Server response:
HTTP/1.1 OK

Data (XML, JSON)

5

Browser (client) request:
GET /dev42/res HTTP/1.1

Host: devices.net

3

Proxy forwards server response:
HTTP/1.1 OK

Data (XML, JSON)

6

ID Srv.

Conn.

… …

dev42 37

… …

© Peter R. Egli 2017
17/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

4. Reverse HTTP (5/5)
Solution 3: Reverse HTTP (3/3)

1. The mobile node registers with the proxy:

The mobile node opens an outgoing HTTP connection to the proxy (the proxy must be accessible both by the mobile node and

the web browser, so usually the proxy is somewhere in the Internet).

The URL in the POST request contains an ID of the client (dev42 in the example).
The mobile node requests to upgrade the connection to reverse HTTP with the HTTP header fields Upgrade: PTTH/1.0 and

Connection: Upgrade.

2. Proxy accepts the connection switch:
The proxy accepts the connection upgrade by responding with HTTP/1.1 Switching Protocols, Upgrade: PTTH/1.0.

The proxy adds the mobile client's ID (dev42) to its connection table (dev42 is accessible through HTTP connection 37).

From now on the proxy acts like an HTTP client while the mobile node is an HTTP server.

3. Browser request:

The user enters the URL http://www.devices.net/dev42/res in the browser in order to access the resource 'res' on the mobile

node. The host in the URL is the proxy's domain name address, so the browser sends the request to the proxy.

4. Proxy forwards request:

The proxy consults its connection table and finds that dev42 is accessible through HTTP connection 37. The proxy forwards

the browser request through HTTP connection 37.

5. Mobile node's HTTP server response:

The web server application on the mobile node retrieves the requested resource 'res' and sends the response back to the

proxy.

6. Proxy forwards response:

The proxy forwards the response back to the browser.

http://www.devices.net/dev42/res

© Peter R. Egli 2017
18/18

Rev. 3.00

Comet – HTML5 – WebSockets peteregli.net

5. HTML5
HTML5 ~= HTML + CSS + Javascript

New features in HTML5 (incomplete list):

Check your browser‘s HTML5 support:

 http://modernizr.github.io/Modernizr/test/index.html

New feature Description

Microdata

Annotate HTML pages with semantic information ( semantic web).

Example microdata standards: schema.org

Web storage Key value pair storage to store arbitrary data (no more size restrictions as with cookies).

Web SQL database

Javascript API to access a browser-integrated SQL database.

This specification is not maintained anymore (see http://dev.w3.org/html5/webdatabase/).

Web workers

Background tasks that execute Javascript code. Allows to better separate the GUI from

application code processing (no more lengthy processing required in GUI event handlers).

Semantic tags New tags with semantics such as <SECTION>, <ARTICLE>, <HEADER>.

Audio and video tags Direct support for audio and video in HTML, no more plugins required (Flash, Silverlight).

Canvas2D and Canvas3D Canvas object for drawing shapes.

SVG support SVG (Scalable Vector Graphics) is now part of the HTML standard.

New CSS selectors nth-children(even/odd), first-child etc.

Web fonts Support for font standards like OTF (Open Type Font).

http://modernizr.github.io/Modernizr/test/index.html
schema.org
http://dev.w3.org/html5/webdatabase/

